Arithmetic progression - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Arithmetic progression
 ...
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks

An arithmetic progression or arithmetic sequence (AP) is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2.

If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence () is given by:

A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series.

History

According to an anecdote of uncertain reliability,[1] young Carl Friedrich Gauss, who was in primary school, reinvented the formula for summing the integers from 1 through , for the case , by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. However, regardless of the truth of this story, Gauss was not the first to discover this formula, and some find it likely that its origin goes back to the Pythagoreans in the 5th century BC.[2] Similar rules were known in antiquity to Archimedes, Hypsicles and Diophantus;[3] in China to Zhang Qiujian; in India to Aryabhata, Brahmagupta and Bhaskara II;[4] and in medieval Europe to Alcuin,[5] Dicuil,[6] Fibonacci,[7] Sacrobosco[8] and to anonymous commentators of Talmud known as Tosafists.[9]

Sum

2 + 5 + 8 + 11 + 14 = 40
14 + 11 + 8 + 5 + 2 = 40

16 + 16 + 16 + 16 + 16 = 80

Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.

The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum:

This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:

In the case above, this gives the equation:

This formula works for any real numbers and . For example: this

Derivation

Animated proof for the formula giving the sum of the first integers 1+2+...+n.

To derive the above formula, begin by expressing the arithmetic series in two different ways:

Rewriting the terms in reverse order:

Adding the corresponding terms of both sides of the two equations and halving both sides:

This formula can be simplified as:

Furthermore, the mean value of the series can be calculated via:








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk