Bernoulliho rovnica - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Bernoulliho rovnica
Obr. 1.a Prúdová trubica s naznačenými prúdnicami
Obr. 1.b Pohyb tekutiny v prúdovej trubici

Bernoulliho rovnica je dôležitý vzťah používaný v hydrodynamike, ktorý je matematickým vyjadrením zákona zachovania energie v ustálenom toku kvapaliny alebo plynu. Zákon odvodil švajčiarsky matematik Daniel Bernoulli.

Odvodenie

Jedno z možných odvodení Bernoulliho rovnice vychádza zo zákona zachovania energie v kvapaline. Pri odvádzaní sa využíva predpoklad ustálenosti prúdenia, t. j. že na žiadnom mieste tekutiny sa rýchlosť nemení s časom.

Predstavme si zväzok blízkych prúdnic, ktoré formujú prúdovú trubicu ako na obr. 1a. Keďže steny trubice sú tvorené prúdnicami, nevyteká nimi žiadna tekutina. Označme plochu prierezu na vtoku do trubice , rýchlosť tekutiny v tomto bode označme . Obdobne označme plochu prierezu a rýchlosť tekutiny na výtoku ako a . Keďže prúdenie je ustálené, v trubici sa nemôže hromadiť tekutina. To znamená, že hmotnosť vytečenej a vtečenej tekutiny za jednotku času musí byť rovnaká:

Máme teda rovnosť:

Tiež známu ako rovnicu kontinuity.

Teraz vypočítame prácu, ktorú vykonal tlak v tekutine. Práca vykonaná na tekutine, ktorá vteká do je zatiaľ čo práca odovzdaná na výtoku je . Výsledná práca vykonaná na tekutine medzi a je preto:

a musí byť rovná zvýšeniu energie tekutiny hmotnosti pri prechode z do . Teda:

pričom je energia na jednotku hmotnosti tekutiny na vtoku a na výtoku. Energiu na jednotku hmotnosti môžeme zapísať ako:

Kde je kinetická energia na jednotku hmotnosti, je potenciálna energia na jednotku hmotnosti a je člen, ktorý reprezentuje vnútornú energiu jednotky hmotnosti tekutiny. Dosadením vzťahu do predchádzajucej rovnice potom dostávame:

Keďže však , tak dostaneme výraz:

Zdroj: Wikipedia.org - čítajte viac o Bernoulliho rovnica

Podporte znalostnú spoločnosť na Slovensku...
čítajte viac na tomto odkaze: Fyzika





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk