German tank problem - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

German tank problem
 ...

During World War II, production of German tanks such as the Panther was accurately estimated by Allied intelligence using statistical methods.

In the statistical theory of estimation, the German tank problem consists of estimating the maximum of a discrete uniform distribution from sampling without replacement. In simple terms, suppose there exists an unknown number of items which are sequentially numbered from 1 to N. A random sample of these items is taken and their sequence numbers observed; the problem is to estimate N from these observed numbers.

The problem can be approached using either frequentist inference or Bayesian inference, leading to different results. Estimating the population maximum based on a single sample yields divergent results, whereas estimation based on multiple samples is a practical estimation question whose answer is simple (especially in the frequentist setting) but not obvious (especially in the Bayesian setting).

The problem is named after its historical application by Allied forces in World War II to the estimation of the monthly rate of German tank production from very limited data. This exploited the manufacturing practice of assigning and attaching ascending sequences of serial numbers to tank components (chassis, gearbox, engine, wheels), with some of the tanks eventually being captured in battle by Allied forces.

Suppositions

The adversary is presumed to have manufactured a series of tanks marked with consecutive whole numbers, beginning with serial number 1. Additionally, regardless of a tank's date of manufacture, history of service, or the serial number it bears, the distribution over serial numbers becoming revealed to analysis is uniform, up to the point in time when the analysis is conducted.

Example

Estimated population size (N). The number of observations in the sample is k. The largest sample serial number is m. Frequentist analysis is shown with dotted lines. Bayesian analysis has solid yellow lines with mean and shading to show range from minimum possible value to mean plus 1 standard deviation). The example shows if four tanks are observed and the highest serial number is "60", frequentist analysis predicts 74, whereas Bayesian analysis predicts a mean of 88.5 and standard deviation of 138.72 − 88.5 = 50.22, and a minimum of 60 tanks. In the SVG file, hover over a graph to highlight it.

Assuming tanks are assigned sequential serial numbers starting with 1, suppose that four tanks are captured and that they have the serial numbers: 19, 40, 42 and 60.

A frequentist approach (using the minimum-variance unbiased estimator) predicts the total number of tanks produced will be:

A Bayesian approach (using a uniform prior over the integers in for any suitably large ) predicts that the median number of tanks produced will be very similar to the frequentist prediction:

whereas the Bayesian mean predicts that the number of tanks produced would be:

Let N equal the total number of tanks predicted to have been produced, m equal the highest serial number observed and k equal the number of tanks captured.

The frequentist prediction is calculated as:

The Bayesian median is calculated as:

The Bayesian mean is calculated as:

These Bayesian quantities are derived from the Bayesian posterior distribution:

This probability mass function has a positive skewness, related to the fact that there are at least 60 tanks. Because of this skewness, the mean may not be the most meaningful estimate. The median in this example is 74.5, in close agreement with the frequentist formula. Using Stirling's approximation, the posterior may be approximated by an exponentially decaying function of n,

which results in the following approximation for the median:

and the following approximations for the mean and standard deviation:







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk