A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Iónová sila roztoku udáva účinok elektrický nábojov všetkých iónov v danom roztoku.[1] Po rozpustení vo vode sa iónové zlúčeniny disociujú na ióny. Celková koncentrácia elektrolytov v roztoku ovplyvňuje dôležité vlastnosti, ako napríklad disociačnú konštantu alebo rozpustnosť iných solí. Iónová sila je jednou z hlavných charakteristík roztoku s rozpustenými iónmi. Môže byť udávaná v molárnej alebo molálnej koncentrácii.
Koncept iónovej sily bol prvýkrát predstavený v roku 1921 pri popisoch aktivitných koeficientov silných elektrolytov.[2]
Výpočet iónovej sily
Iónová sila roztoku, I, je závislá na koncentrácii a náboji všetkých prítomných iónov v danom roztoku. Je možné ju spočítať ako[1]
kde jedna polovica zohľadňuje príspevok aniónov i katiónov, ci je molárna koncentrácia iónu i (v mol/l) a zi je náboj daného iónu. Suma zahŕňa všetky ióny prítomné v roztoku.[1]
Pre elektrolyty, kde každý ión má jednotkový náboj, ako sú napríklad chlorid sodný či chlorovodík, je iónová sila rovná koncentrácii soli.[1] Avšak napríklad pre síran horečnatý, MgSO4, kde je každý ión nabitý dvakrát (Mg2+ a SO42-), je iónová sila rovná štvornásobku ekvivalentnej koncentrácie chloridu sodného:[1]
Všeobecne teda platí, že ióny s vyšším nábojom (Ca2+, Fe3+, PO43-...) prispievajú k iónovej sile výraznejšie.
Príklad výpočtu
Iónovú silu možno výpočítať i pre zmesi roztokov. Pre roztok 0,050 M Na2SO4 a 0,020 M KCl bude iónová sila
Neideálne roztoky
Keďže v neideálnych roztokoch nie sú objemy aditívne, často je lepšie namiesto molárnej koncentrácie využiť molálnu koncentráciu, teda b (látkové množstvo látky na kilogram rozpúšťadla). V tom prípade je možné iónovú silu vypočítať ako
kde i je poradové číslo iónu, b je molálna koncentrácia v mol/kg a z je náboj iónu. Výpočet je teda obdobný výpočtu v prípade molárnej koncentrácie.
Význam
Minerálna voda a slaná voda majú takisto často nezanedbateľnú iónovú silu práve vďaka tomu, že sú v nich prítomné rozpustené soli, čo výrazne ovplyvňuje ich vlastnosti.
Debye-Hückelova teória
Iónová sila je dôležitá v rámci Debye–Hückelovej teórie, ktorá popisuje veľké odchýlky vznikajúce pri meraní iónových roztokov oproti popisu ideálnych roztokov.[3][4] Iónová sila umožňuje vypočítať stredný aktivitný koeficient[1]
kde je stredný aktivitný koeficient, A je konštanta (jej hodnota je 0,509 pre vodný roztok pri 25 °C[5][6]), x a y sú počty katiónov a aniónov elektrolytu (ktorého vzorec je KxAy) a I je iónová sila. Aktivitný koeficient je teda zhodný vo všetkých roztokoch s rovnakou iónovou silou. Tento zákon však platí len pre relatívne zriedené roztoky, kde I < 0,02 M.[1] Alternatívne sa tento vzťah uvádza ako[5]
kde z+ a z- sú náboje katiónu a aniónu elektrolytu. Tento vzťah sa nazýva Debye-Hückelov limitný zákon. Označuje sa ako limitný, pretože platí len pre malé koncentrácie a pri vyšších koncentráciách nastáva poznateľný rozdiel, ktorý však opravujú korekcie v rozšírenom Debye-Hückelovom zákone.[5][7]
Elektrická dvojvrstva
Iónová sila je takisto dôležitá v teórii elektrickej dvojvrstvy,[8] vznikajúcej napríklad pri meraní elektrických vlastností roztokov na rozhraní elektródy a roztoku, a pridružených elektrokinetických fenoménoch a elektroakustických fenoménoch v koloidných a iných heterogénnych roztokoch. Konkrétne, Debyeova dĺžka, ktorá je prevrátenou hodnotou Debyeovho parametra (κ), je nepriamo úmerná odmocnine iónovej sily.[8] Debyeova dĺžka popisuje mieru elektrostratického efektu nosiča náboja a to, ako ďaleko tento náboj pôsobí,[9] a vyjadruje tak šírku elektrickej dvojvrstvy.[8] Zvyšovanie koncentrácie alebo náboja protiiónu (teda zvyšovaním iónovej sily) sa zmenšuje šírku dvojvrstvy, čo vedie k zvýšeniu gradientu elektrického potenciálu.
Vodivosť roztokov
Pridanie indiferentného (nereagujúceho) elektrolytu má za následok zvýšenie vodivých vlastností roztoku, čo sa uplatňuje napríklad vo voltametrii alebo ampérometrii. Týmto sa minimalizuje rozdielnosť aktivity rôznych stanovovaných iónov a znižuje chyba merania.[10] Typicky sa využíva chlorid draselný alebo chloristan sodný,[11] je však možné využiť i iné elektrolyty.
Rovnovážna konštanta
Roztoky s vysokou iónovou silou sa používajú v stanovení rovnovážnych konštánt, aby sa minimalizovali zmeny aktivitných koeficientov rozpustených látok pri nízkych koncentráciách počas titrácie.[12]
Referencieupraviť | upraviť zdroj
- ↑ a b c d e f g iónová sila. In: BÍNA, Jaroslav. Malá encyklopédia chémie. Bratislava : Obzor, 1981. S. 343.
- ↑ The concept of ionic strength eighty years after its introduction in chemistry. Journal of Chemical Education, 2004, s. 750. DOI: 10.1021/ed081p750.
- ↑ Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 1923, s. 185–206. Dostupné online.
- ↑ SKOOG, D.A.; WEST, D.M.; HOLLER, F.J.. Fundamentals of analytical chemistry. s.l. : Brooks/Cole Pub Co, 2004. Dostupné online. ISBN 0-03-058459-0.
- ↑ a b c ATKINS, P. W.. Physical chemistry.. New York : W.H. Freeman and Co, 2010. (9th ed..) Dostupné online. ISBN 978-1-4292-1812-2. S. 195-198.
- ↑ Meziiontové interakce online. is.muni.cz, cit. 2022-11-03. Dostupné online.
- ↑ BLACK, Jay R.. Debye-Hückel Equation. Cham : Springer International Publishing, 2016. DOI: 10.1007/978-3-319-39193-9_61-1. Dostupné online. ISBN 978-3-319-39193-9. DOI:10.1007/978-3-319-39193-9_61-1 S. 1–3. (po anglicky)
- ↑ a b c DUKHIN, Andrei S.; GOETZ, Philip J.. Chapter 2 - Fundamentals of Interface and Colloid Science. s.l. : Elsevier, 2017-01-01. DOI: 10.1016/B978-0-444-63908-0.00002-8. Dostupné online. ISBN 978-0-444-63908-0. DOI:10.1016/b978-0-444-63908-0.00002-8 S. 19–83. (po anglicky)
- ↑ Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 2019, s. 185–206. Dostupné online.
- ↑ What is Ionic Strength Adjuster and Why is it Added to Samples and Standards for ISE Sensors?
- ↑ Ionic Strength
- ↑ SEYMOUR, M. D.; FERNANDO, Quintus. Effect of Ionic Strength on Equilibrium Constants. Journal of Chemical Education, 1977-04, roč. 54, čís. 4, s. 225. Dostupné online cit. 2022-11-03. ISSN 0021-9584. DOI: 10.1021/ed054p225. (po anglicky)
Zdrojupraviť | upraviť zdroj
Tento článok je čiastočný alebo úplný preklad článku Ionic strength na anglickej Wikipédii.
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Činný výkon
Absorbovaná dávka
Absorptancia
Adiabatická účinnosť
Aktivita (termodynamika)
Anergia (termodynamika)
Chemický potenciál
Detonačná rýchlosť
Dvojlom
Efektívny výkon
Elektrónový tlak
Elektrická indukcia
Elementárny náboj
Energia
Entalpia
Exergia
Expozícia (ožiarenie)
Frekvencia (fyzika)
Fugacita
Fyzikálna veličina
Gibbsova voľná energia
Hodnota fyzikálnej veličiny
Hybnosť
Iónová sila
Index lomu
Intenzita magnetického poľa
Intenzita osvetlenia
Kinetická energia
Koeficient tepelnej vodivosti
Krútiaci moment
Látkové množstvo
Magnetická susceptibilita
Magnetický indukčný tok
Magnetizácia (veličina)
Mechanická energia
Mechanická práca
Mechanické napätie
Menovitý výkon
Merná vodivosť
Merný objemový výkon
Molárny objem
Moment hybnosti
Moment sily
Moment zotrvačnosti
Objemová sila
Objemový prietok
Objem (matematika)
Osmolalita
Osmolarita
Osmotický tlak
Perióda (fyzika)
Permeabilita (magnetizmus)
Plošná hustota elektrického prúdu
Plošné zrýchlenie
Potenciálna energia
Povrchové napätie
Práca (fyzika)
Príkon
Rýchlosť (fyzikálna veličina)
Rýchlosť zvuku
Ryv
Súčiniteľ teplotnej vodivosti
Sila
Silové napätie v hmote
Spin (fyzika)
Svetelný tok
Svetelnosť
Svietivosť (fyzika)
Tepelná rovnováha
Tepelný odpor
Teplo
Termická účinnosť
Termodynamická účinnosť
Tlaková potenciálna energia
Tuhosť
Uhlová rýchlosť
Uhlové zrýchlenie
Výhrevnosť
Výkon (mechanický)
Veľkosť veličiny
Vedenie tepla
Viskozita
Vnútorná energia
Vodivosť
Vzorce na výpočet momentu zotrvačnosti
Zrýchlenie
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk