Integrated nested Laplace approximations - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integrated nested Laplace approximations
 ...

Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method.[1] It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions.[2][3][4] Due to its relative speed even with large data sets for certain problems and models, INLA has been a popular inference method in applied statistics, in particular spatial statistics, ecology, and epidemiology.[5][6][7] It is also possible to combine INLA with a finite element method solution of a stochastic partial differential equation to study e.g. spatial point processes and species distribution models.[8][9] The INLA method is implemented in the R-INLA R package.[10]

Latent Gaussian models

Let denote the response variable (that is, the observations) which belongs to an exponential family, with the mean (of ) being linked to a linear predictor via an appropriate link function. The linear predictor can take the form of a (Bayesian) additive model. All latent effects (the linear predictor, the intercept, coefficients of possible covariates, and so on) are collectively denoted by the vector . The hyperparameters of the model are denoted by . As per Bayesian statistics, and are random variables with prior distributions.

The observations are assumed to be conditionally independent given and : where is the set of indices for observed elements of (some elements may be unobserved, and for these INLA computes a posterior predictive distribution). Note that the linear predictor is part of .

For the model to be a latent Gaussian model, it is assumed that is a Gaussian Markov Random Field (GMRF)[1] (that is, a multivariate Gaussian with additional conditional independence properties) with probability density where is a -dependent sparse precision matrix and is its determinant. The precision matrix is sparse due to the GMRF assumption. The prior distribution for the hyperparameters need not be Gaussian. However, the number of hyperparameters, , is assumed to be small (say, less than 15).

Approximate Bayesian inference with INLA

In Bayesian inference, one wants to solve for the posterior distribution of the latent variables and . Applying Bayes' theorem the joint posterior distribution of and is given by Obtaining the exact posterior is generally a very difficult problem. In INLA, the main aim is to approximate the posterior marginals








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk