Intuitionistic logic - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Intuitionistic logic
 ...

Intuitionistic logic[broken anchor], sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretation.[1]

Several systems of semantics for intuitionistic logic have been studied. One of these semantics mirrors classical Boolean-valued semantics but uses Heyting algebras in place of Boolean algebras. Another semantics uses Kripke models. These, however, are technical means for studying Heyting’s deductive system rather than formalizations of Brouwer’s original informal semantic intuitions. Semantical systems claiming to capture such intuitions, due to offering meaningful concepts of “constructive truth” (rather than merely validity or provability), are Kurt Gödel’s dialectica interpretation, Stephen Cole Kleene’s realizability, Yurii Medvedev’s logic of finite problems,[2] or Giorgi Japaridze’s computability logic. Yet such semantics persistently induce logics properly stronger than Heyting’s logic. Some authors have argued that this might be an indication of inadequacy of Heyting’s calculus itself, deeming the latter incomplete as a constructive logic.[3]

Mathematical constructivism

In the semantics of classical logic, propositional formulae are assigned truth values from the two-element set ("true" and "false" respectively), regardless of whether we have direct evidence for either case. This is referred to as the 'law of excluded middle', because it excludes the possibility of any truth value besides 'true' or 'false'. In contrast, propositional formulae in intuitionistic logic are not assigned a definite truth value and are only considered "true" when we have direct evidence, hence proof. (We can also say, instead of the propositional formula being "true" due to direct evidence, that it is inhabited by a proof in the Curry–Howard sense.) Operations in intuitionistic logic therefore preserve justification, with respect to evidence and provability, rather than truth-valuation.

Intuitionistic logic is a commonly-used tool in developing approaches to constructivism in mathematics. The use of constructivist logics in general has been a controversial topic among mathematicians and philosophers (see, for example, the Brouwer–Hilbert controversy). A common objection to their use is the above-cited lack of two central rules of classical logic, the law of excluded middle and double negation elimination. David Hilbert considered them to be so important to the practice of mathematics that he wrote:

"Taking the principle of excluded middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of his fists. To prohibit existence statements and the principle of excluded middle is tantamount to relinquishing the science of mathematics altogether."[4]

Intuitionistic logic has found practical use in mathematics despite the challenges presented by the inability to utilize these rules. One reason for this is that its restrictions produce proofs that have the existence property, making it also suitable for other forms of mathematical constructivism. Informally, this means that if there is a constructive proof that an object exists, that constructive proof may be used as an algorithm for generating an example of that object, a principle known as the Curry–Howard correspondence between proofs and algorithms. One reason that this particular aspect of intuitionistic logic is so valuable is that it enables practitioners to utilize a wide range of computerized tools, known as proof assistants. These tools assist their users in the generation and verification of large-scale proofs, whose size usually precludes the usual human-based checking that goes into publishing and reviewing a mathematical proof. As such, the use of proof assistants (such as Agda or Coq) is enabling modern mathematicians and logicians to develop and prove extremely complex systems, beyond those that are feasible to create and check solely by hand. One example of a proof that was impossible to satisfactorily verify without formal verification is the famous proof of the four color theorem. This theorem stumped mathematicians for more than a hundred years, until a proof was developed that ruled out large classes of possible counterexamples, yet still left open enough possibilities that a computer program was needed to finish the proof. That proof was controversial for some time, but, later, it was verified using Coq.

Syntax

The Rieger–Nishimura lattice. Its nodes are the propositional formulas in one variable up to intuitionistic logical equivalence, ordered by intuitionistic logical implication.

The syntax of formulas of intuitionistic logic is similar to propositional logic or first-order logic. However, intuitionistic connectives are not definable in terms of each other in the same way as in classical logic, hence their choice matters. In intuitionistic propositional logic (IPL) it is customary to use →, ∧, ∨, ⊥ as the basic connectives, treating ¬A as an abbreviation for (A → ⊥). In intuitionistic first-order logic both quantifiers ∃, ∀ are needed.

Hilbert-style calculus

Intuitionistic logic can be defined using the following Hilbert-style calculus. This is similar to a way[broken anchor] of axiomatizing classical propositional logic.[5]

In propositional logic, the inference rule is modus ponens

  • MP: from and infer

and the axioms are

  • THEN-1:
  • THEN-2:
  • AND-1:
  • AND-2:
  • AND-3:
  • OR-1:
  • OR-2:
  • OR-3:
  • FALSE:

To make this a system of first-order predicate logic, the generalization rules

  • -GEN: from infer , if is not free in
  • -GEN: from infer , if is not free in

are added, along with the axioms

  • PRED-1: , if the term is free for substitution for the variable in (i.e., if no occurrence of any variable in becomes bound in






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk