Kramers–Moyal expansion - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Kramers–Moyal expansion
 ...

In stochastic processes, Kramers–Moyal expansion refers to a Taylor series expansion of the master equation, named after Hans Kramers and José Enrique Moyal.[1][2][3] In many textbooks, the expansion is used only to derive the Fokker–Planck equation, and never used again. In general, continuous stochastic processes are essentially all Markovian, and so Fokker–Planck equations are sufficient for studying them. The higher-order Kramers–Moyal expansion only come into play when the process is jumpy. This usually means it is a Poisson-like process.[4][5]

For a real stochastic process, one can compute its central moment functions from experimental data on the process, from which one can then compute its Kramers–Moyal coefficients, and thus empirically measure its Kolmogorov forward and backward equations. This is implemented as a python package [6]

Statement

Start with the integro-differential master equation

where is the transition probability function, and is the probability density at time . The Kramers–Moyal expansion transforms the above to an infinite order partial differential equation[7][8][9]

and also

where are the Kramers–Moyal coefficients, defined by

and are the central moment functions, defined by

The Fokker–Planck equation is obtained by keeping only the first two terms of the series in which is the drift and is the diffusion coefficient.[10]

Also, the moments, assuming they exist, evolves as[11]

where angled brackets mean taking the expectation: .

n-dimensional version

The above version is the one-dimensional version. It generalizes to n-dimensions. (Section 4.7 [9])

Proof

In usual probability, where the probability density does not change, the moments of a probability density function determines the probability density itself by a Fourier transform (details may be found at the characteristic function page):







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk