Maximum-entropy random graph model - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Maximum-entropy random graph model
 ...

Maximum-entropy random graph models are random graph models used to study complex networks subject to the principle of maximum entropy under a set of structural constraints,[1] which may be global, distributional, or local.

Overview

Any random graph model (at a fixed set of parameter values) results in a probability distribution on graphs, and those that are maximum entropy within the considered class of distributions have the special property of being maximally unbiased null models for network inference[2] (e.g. biological network inference). Each model defines a family of probability distributions on the set of graphs of size (for each for some finite ), parameterized by a collection of constraints on observables defined for each graph (such as fixed expected average degree, degree distribution of a particular form, or specific degree sequence), enforced in the graph distribution alongside entropy maximization by the method of Lagrange multipliers. Note that in this context "maximum entropy" refers not to the entropy of a single graph, but rather the entropy of the whole probabilistic ensemble of random graphs.

Several commonly studied random network models are in fact maximum entropy, for example the ER graphs and (which each have one global constraint on the number of edges), as well as the configuration model (CM).[3] and soft configuration model (SCM) (which each have local constraints, one for each nodewise degree-value). In the two pairs of models mentioned above, an important distinction[4][5] is in whether the constraint is sharp (i.e. satisfied by every element of the set of size- graphs with nonzero probability in the ensemble), or soft (i.e. satisfied on average across the whole ensemble). The former (sharp) case corresponds to a microcanonical ensemble,[6] the condition of maximum entropy yielding all graphs satisfying as equiprobable; the latter (soft) case is canonical,[7] producing an exponential random graph model (ERGM).

Model Constraint type Constraint variable Probability distribution
ER, Sharp, global Total edge-count
ER, Soft, global Expected total edge-count
Configuration model Sharp, local Degree of each vertex,
Soft configuration model Soft, local Expected degree of each vertex,

Canonical ensemble of graphs (general framework)

Suppose we are building a random graph model consisting of a probability distribution on the set








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk