Regulárna matica - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Regulárna matica
 ...

Matica je určitá množina čísel alebo iných matematických objektov (tzv. prvkov matice) usporiadaných do pravidelných riadkov a stĺpcov (prípadne aj ich viacrozmerných ekvivalentov) a vyznačujúcich sa tým, že každý výpočtový úkon vykonávaný s maticou sa týka každého prvku tvoriaceho maticu.

Najčastejšie sa možno stretnúť s dvojrozmernou maticou. Ak treba zdôrazniť, že má riadkov a stĺpcov, hovorí sa o matici typu krát . Ak treba zdôrazniť, že objekty v tejto tabuľke pochádzajú z množiny hovorí sa o matici nad množinou . Príkladom matice typu nad množinou celých čísel môže byť

Prvky matice A zvyčajne označujeme ako , pričom i je číslo riadku a j stĺpca.

Matice sú obzvlášť dôležité v lineárnej algebre kde reprezentujú lineárne zobrazenia a slúžia k efektívnemu zápisu lineárnych rovníc. Pomocou matíc nad množinou sa reprezentujú konečné binárne relácie.

Všeobecne možno akúkoľvek maticu zapísať v tvare:

.

Matice podľa tvaru

Štvorcová matica je matica, v ktorej sa počet riadkov rovná počtu stĺpcov. Špeciálnym prípadom je štvorcová matica, ktorá obsahuje len jeden prvok, má teda jeden riadok a jeden stĺpec. Takáto matica sa niekedy nazýva singleton (podobne ako jednoprvková množina).

Obdĺžniková matica je matica, v ktorej je počet riadkov a počet stĺpcov rozdielny.

Riadková matica je obdĺžniková matica, ktorá má len jeden riadok, označuje sa aj ako vektorová matica.

Stĺpcová matica je obdĺžniková matica, ktorá má len jeden stĺpec, označuje sa aj ako vektorová matica.

Operácie s maticami

Ak prvky dvoch matíc pochádzajú z vhodnej algebraickej štruktúry a ak sú splnené obmedzujúce podmienky týkajúce sa typu matíc, možno s maticami vykonávať rôzne operácie. Pre operáciu s maticami však neplatia všetky pravidlá platné pri počítaní s číslami, preto sa treba riadiť definíciami, ktoré maticové operácie určujú. Napríklad nie je jedno, v akom poradí sa násobia matice.

Sčítavanie matíc

Sčítavanie matíc môže prebiehať len vtedy, ak tieto dve matice majú rovnaký rozmer. Sčítavajú sa čísla na rovnakých pozíciách. Napríklad:

Skalárne násobenie

Každý prvok v matici A sa vynásobí číslom c. Napríklad: