Synthetic-aperture radar - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Synthetic-aperture radar
 ...

This radar image acquired by the SIR-C/X-SAR radar on board the Space Shuttle Endeavour shows the Teide volcano. The city of Santa Cruz de Tenerife is visible as the purple and white area on the lower right edge of the island. Lava flows at the summit crater appear in shades of green and brown, while vegetation zones appear as areas of purple, green and yellow on the volcano's flanks.

Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes.[1] SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture (the size of the antenna). Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical (a large antenna) or synthetic (a moving antenna) – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.

To create a SAR image, successive pulses of radio waves are transmitted to "illuminate" a target scene, and the echo of each pulse is received and recorded. The pulses are transmitted and the echoes received using a single beam-forming antenna, with wavelengths of a meter down to several millimeters. As the SAR device on board the aircraft or spacecraft moves, the antenna location relative to the target changes with time. Signal processing of the successive recorded radar echoes allows the combining of the recordings from these multiple antenna positions. This process forms the synthetic antenna aperture and allows the creation of higher-resolution images than would otherwise be possible with a given physical antenna.[2]

Motivation and applications

The surface of Venus, as imaged by the Magellan probe using SAR, colorized with false color.

SAR is capable of high-resolution remote sensing, independent of flight altitude, and independent of weather, as SAR can select frequencies to avoid weather-caused signal attenuation. SAR has day and night imaging capability as illumination is provided by the SAR.[3][4][5]

SAR images have wide applications in remote sensing and mapping of surfaces of the Earth and other planets. Applications of SAR are numerous. Examples include topography, oceanography, glaciology, geology (for example, terrain discrimination and subsurface imaging). SAR can also be used in forestry to determine forest height, biomass, and deforestation. Volcano and earthquake monitoring use differential interferometry. SAR can also be applied for monitoring civil infrastructure stability such as bridges.[6] SAR is useful in environment monitoring such as oil spills, flooding,[7][8] urban growth,[9] military surveillance: including strategic policy and tactical assessment.[5] SAR can be implemented as inverse SAR by observing a moving target over a substantial time with a stationary antenna.

Basic principle

Basic principle

A synthetic-aperture radar is an imaging radar mounted on a moving platform.[10] Electromagnetic waves are transmitted sequentially, the echoes are collected and the system electronics digitizes and stores the data for subsequent processing. As transmission and reception occur at different times, they map to different small positions. The well ordered combination of the received signals builds a virtual aperture that is much longer than the physical antenna width. That is the source of the term "synthetic aperture," giving it the property of an imaging radar.[5] The range direction is perpendicular to the flight track and perpendicular to the azimuth direction, which is also known as the along-track direction because it is in line with the position of the object within the antenna's field of view.

The 3D processing is done in two stages. The azimuth and range direction are focused for the generation of 2D (azimuth-range) high-resolution images, after which a digital elevation model (DEM)[11][12] is used to measure the phase differences between complex images, which is determined from different look angles to recover the height information. This height information, along with the azimuth-range coordinates provided by 2-D SAR focusing, gives the third dimension, which is the elevation.[3] The first step requires only standard processing algorithms,[12] for the second step, additional pre-processing such as image co-registration and phase calibration is used.[3][13]

In addition, multiple baselines can be used to extend 3D imaging to the time dimension. 4D and multi-D SAR imaging allows imaging of complex scenarios, such as urban areas, and has improved performance with respect to classical interferometric techniques such as persistent scatterer interferometry (PSI).[14]

Algorithm

SAR algorithms model the scene as a set of point targets that do not interact with each other (the Born approximation).

While the details of various SAR algorithms differ, SAR processing in each case is the application of a matched filter to the raw data, for each pixel in the output image, where the matched filter coefficients are the response from a single isolated point target.[15] In the early days of SAR processing, the raw data was recorded on film and the postprocessing by matched filter was implemented optically using lenses of conical, cylindrical and spherical shape. The Range-Doppler algorithm is an example of a more recent approach.

Existing spectral estimation approaches

Synthetic-aperture radar determines the 3D reflectivity from measured SAR data. It is basically a spectrum estimation, because for a specific cell of an image, the complex-value SAR measurements of the SAR image stack are a sampled version of the Fourier transform of reflectivity in elevation direction, but the Fourier transform is irregular.[16] Thus the spectral estimation techniques are used to improve the resolution and reduce speckle compared to the results of conventional Fourier transform SAR imaging techniques.[17] Zdroj:https://en.wikipedia.org?pojem=Synthetic-aperture_radar
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk