A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Vedenie tepla (zastarano tepelná kondukcia) je jeden zo spôsobov šírenia tepla v telesách, pri ktorom si pri vzájomných zrážkach častice materiálu navzájom odovzdávajú časť svojej pohybovej energie.
V dôsledku vedenia tepla prúdi energia vždy z oblastí s vyššou teplotou do chladnejších častí telesa. Bez vonkajších vplyvov (dodatočné ohrievanie, resp. ochladzovanie) je výsledkom vedenia tepla rovnováha, pri ktorej má každá časť telesa rovnakú teplotu.
Vedenie tepla je najčastejší spôsob šírenia tepla v pevných telesách. Porovnať látky podľa ich tepelnej vodivosti umožňuje veličina súčiniteľ tepelnej vodivosti. Hustejšie látky sú zvyčajne lepšími vodičmi tepla, výbornými vodičmi tepla sú kovy. Takéto látky nazývame tepelnými vodičmi. Látky, ktoré teplo vedú veľmi slabo, nazývame tepelné izolanty – veľký význam majú napríklad v stavebníctve (pri izolácii budov).
Pri vedení tepla častice látky v oblasti s vyššou strednou kinetickou energiou predávajú časť svojej pohybovej energie prostredníctvom vzájomných zrážok častíc v oblasti s nižšou strednou kinetickou energiou. Častice sa pritom nepremiestňujú, ale len kmitajú okolo svojich rovnovážnych polôh.
Vedenie tepla sa uplatňuje predovšetkým v tuhých telesách, ktorých rôzne časti majú rôznu teplotu. Teplo sa vedením šíri tiež v kvapalinách a plynoch, kde sa však uplatňuje tiež prenos tepla prúdením.
Vzťahy
Pre vedenie tepla je základnou rovnicou rovnica vedenia tepla niekedy nazývaná aj Fourierov zákon. Podľa nej ak na tyči s dĺžkou L a prierezom S udržiavame rozdielne teploty koncov a , po čase sa v sústave ustáli rovnováha a teplota sa mení pozdĺž tyče lineárne (pozri obrázok vpravo). Vtedy za čas t pretečie prierezom tyče teplo Q veľkosti
Konštanta úmernosti v tomto vzťahu sa nazýva súčiniteľ tepelnej vodivosti. Je to charakteristika látky, z ktorej je tyč zhotovená. Zo vzťahu vidíme, že množstvo tepla preneseného vedením rastie priamo úmerne s prierezom telesa S a tzv. teplotným spádom (niekedy ho nazývame teplotný diferenciál) .
Fourierov zákon má formu veľmi podobnú Ohmovmu zákonu – oba javy (vedenia tepla i vedenie elektrického prúdu) majú totiž podobný pôvod.
Tyč s konštantným prierezom a lineárnym poklesom teploty pozdĺž tyče je veľmi zjednodušenou sústavou. Vo všeobecnosti platí pre vedenie tepla v látke rovnica
Tu je vektor hustoty tepelného výkonu prenášaného prúdením, je koeficient tepelnej vodivosti a je funkcia (presnejšie skalárne pole) udávajúca teplotu v rôznych bodoch telesa. Zápisom sme označili aplikovanie gradientu na skalárne pole teploty .
Vedenie tepla je možné rozdeliť
- Ustálené (stacionárne) vedenie tepla – teplotný rozdiel medzi jednotlivými časťami telesa sa v čase nemení.
- Neustálené (nestacionárne) vedenie tepla – teplotné rozdiely medzi jednotlivými časťami telesa, medzi ktorými sa teplo prenáša sa postupne vyrovnávajú.
Ustálené vedenie tepla
Ustálené vedenie tepla je možné demonštrovať napr. na tyči dĺžky , ktorej jeden koniec je udržiavaný na teplote a druhý koniec je udržiavaný na teplote . Teplotný rozdiel je teda stály, teplota klesá rovnomerne od teplejšieho konca k chladnejšiemu. Podiel sa nazýva teplotný spád (teplotný gradient).
Množstvo tepla , ktoré za týchto podmienok prejde ľubovoľným kolmým prierezom tyče za dobu , je rovný
Konštanta úmernosti je súčiniteľ tepelnej vodivosti (tepelná vodivosť).
Teplo prechádzajúce plochou určuje tzv. tepelný tok. Množstvo tepla , ktoré prejde plochou za čas sa označuje ako hustota tepelného toku
Podľa predchádzajúcich vzťahov teda pri ustálenom stave platí
Ak hrúbku vrstvy (teda dĺžku tyče) zmenšujeme na , zmení sa na tejto tenkej vrstve teplota o . Vzťah pre hustotu tepelného toku môžeme teda prepísať
Teplotný gradient sa však môže meniť nielen v smere osi , ale tiež v ostatných smeroch. Ide teda o vektorovú veličinu, čo je možné s pomocou operátora gradientu vyjadriť ako
Z tohto vzťahu je vidieť, že priebeh teploty v rovinnej doske je pri ustálenom prúdení tepla lineárna funkcia. Predchádzajúce vzťahy je možné využiť pri riešení problému prechodu tepla rozhraním. Tento vzťah býva tiež označovaný ako Fourierov zákon.
Pokiaľ sa teleso (napr. doska), ktorým teplo prestupuje skladá z vrstiev s rôznou tepelnou vodivosťou a hrúbke pre -tú vrstvu, potom za ustáleného stavu je hustota tepelného prúdu vo všetkých vrstvách rovnaká, tzn.
Pre celkový rozdiel teplôt potom dostaneme
Činný výkon
Absorbovaná dávka
Absorptancia
Adiabatická účinnosť
Aktivita (termodynamika)
Anergia (termodynamika)
Chemický potenciál
Detonačná rýchlosť
Dvojlom
Efektívny výkon
Elektrónový tlak
Elektrická indukcia
Elementárny náboj
Energia
Entalpia
Exergia
Expozícia (ožiarenie)
Frekvencia (fyzika)
Fugacita
Fyzikálna veličina
Gibbsova voľná energia
Hodnota fyzikálnej veličiny
Hybnosť
Iónová sila
Index lomu
Intenzita magnetického poľa
Intenzita osvetlenia
Kinetická energia
Koeficient tepelnej vodivosti
Krútiaci moment
Látkové množstvo
Magnetická susceptibilita
Magnetický indukčný tok
Magnetizácia (veličina)
Mechanická energia
Mechanická práca
Mechanické napätie
Menovitý výkon
Merná vodivosť
Merný objemový výkon
Molárny objem
Moment hybnosti
Moment sily
Moment zotrvačnosti
Objemová sila
Objemový prietok
Objem (matematika)
Osmolalita
Osmolarita
Osmotický tlak
Perióda (fyzika)
Permeabilita (magnetizmus)
Plošná hustota elektrického prúdu
Plošné zrýchlenie
Potenciálna energia
Povrchové napätie
Práca (fyzika)
Príkon
Rýchlosť (fyzikálna veličina)
Rýchlosť zvuku
Ryv
Súčiniteľ teplotnej vodivosti
Sila
Silové napätie v hmote
Spin (fyzika)
Svetelný tok
Svetelnosť
Svietivosť (fyzika)
Tepelná rovnováha
Tepelný odpor
Teplo
Termická účinnosť
Termodynamická účinnosť
Tlaková potenciálna energia
Tuhosť
Uhlová rýchlosť
Uhlové zrýchlenie
Výhrevnosť
Výkon (mechanický)
Veľkosť veličiny
Vedenie tepla
Viskozita
Vnútorná energia
Vodivosť
Vzorce na výpočet momentu zotrvačnosti
Zrýchlenie
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk