Callisto - Biblioteka.sk

Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Callisto
 ...
Callisto
Callisto na snímku sondy Galileo
Callisto na snímku sondy Galileo
Identifikátory
Typměsíc
OznačeníJupiter IV
Objeveno
Datum7. ledna 1610 (Galileo)[1]
ObjevitelGalileo Galilei
Simon Marius
Elementy dráhy
(Ekvinokcium J2000,0)
Velká poloosa1 882 700[2] km
Výstřednost0,007 4[2]
Periapsida1 869 000 km
Apoapsida1 897 000 km[pozn. 1]
Perioda (oběžná doba)16,689 018 4[2] d
Orbitální rychlost 
- průměrná8,204 km/s
Sklon dráhy 
- ke slunečnímu rovníku0,192°
Mateřská hvězdaJupiter
Fyzikální charakteristiky
Rovníkový průměr4820,6 ± 1,5[3] km
(0,378 Země)
Povrch7,30×107[pozn. 2] km²
(0,143 Země)
Objem7,30×1010[pozn. 3] km³
(0,0541 Země)
Hmotnost1,075 938 ± 0,000 137×1023[3] kg
(0,018 Země)
Průměrná hustota1,834 4 ± 0,003 4[3] g/cm³
Gravitace na rovníku1,235[pozn. 4] m/s²
(0,126 G)
Úniková rychlost2,440[pozn. 5] km/s
Sklon rotační osy0[3]°
Albedo0,22 (geometrické)[4]
Povrchová teplota 
- minimální80[4] K
- průměrná134 K
- maximální165 ± 5 K

Callisto, též Jupiter IV, je měsíc Jupiteru. Náleží k tzv. Galileovým měsícům, objevil ho Galileo Galilei v roce 1610.[1] Callisto je druhým největším z Jupiterových měsíců a třetím největším měsícem ve sluneční soustavě po Jupiterově Ganymedu a Saturnově Titanu. Callisto má průměr 4 820 km, takže dosahuje přibližně 99 % velikosti planety Merkur, ale pouze asi třetiny jeho hmotnosti. Obíhá jako čtvrtý nejvzdálenější měsíc z Galileových měsíců se střední vzdáleností asi 1 880 000 km.[2] Oproti Io, Europě a Ganymedu se nepodílí na orbitální rezonanci zmiňovaných měsíců a slapové působení Jupitera je už tak slabé, že nezpůsobuje významný ohřev měsíce.[5] Měsíc má s Jupiterem vázanou rotaci, takže neustále směřuje k planetě stejnou stranou. Jelikož obíhá daleko od Jupiteru, je jeho povrch méně ovlivňován působením jeho magnetosféry než v případě vnitřních měsíců.[6]

Těleso je tvořeno horninami a ledem v přibližně stejném množství. Průměrná hustota měsíce dosahuje 1,83 g/cm3. Spektroskopická měření naznačují, že se na povrchu nachází vodní led, oxid uhličitý, křemičitany a organické látky. Jeho kůra je silná až 150 km. Pod ledovou kůrou měsíce se nachází v hloubce okolo 100 km zřejmě relativně mělký oceán slané vody a pod ním již jen nediferencované či jen částečně diferencované jádro složené z křemičitanů.[7][8]

Povrch Callisto je silně rozryt impaktními krátery a je tudíž velice starý. Nevykazuje žádné stopy podpovrchových procesů jako je desková tektonika či vulkanismus a tak se předpokládá, že jeho povrch byl zcela zformován pouze dopady jiných těles.[9] Výrazné povrchové útvary tvoří četné prstencové struktury, impaktní krátery různých tvarů a pásy sekundárních kráterů a jizev, hřebenů a uloženin.[9] Při pohledu na měsíc z menší vzdálenosti je rozeznatelný členitý povrch tvořený malými světlými zmrzlými depozity nacházejícími se na vrcholcích vyvýšenin. Tyto vyvýšeniny jsou obklopeny hladkou vrstvou tmavého materiálu.[4] Předpokládá se, že je to výsledek degradace malých útvarů vlivem sublimace, což podporuje absence malých impaktních kráterů a přítomnost množství malých pahorků, které pravděpodobně představují jejich zbytky.[10] Absolutní stáří povrchu není známo.

Kolem Callisto se nachází velice slabá atmosféra tvořená oxidem uhličitým[11] a pravděpodobně také molekulárním kyslíkem[12] a nad ní pak poměrně intenzivní ionosféra.[13] Předpokládá se, že měsíc vznikl pomalou akrecí z disku prachu a plynu, který obklopoval Jupiter po jeho vzniku.[14] Protože akrece probíhala pomalu a rovněž slapové ohřívání bylo velmi malé, neměl Callisto dostatek tepla, aby mohla proběhnout jeho vnitřní diferenciace. Pomalá konvekce uvnitř Callisto, která započala krátce po vzniku měsíce, vedla k částečné diferenciaci a pravděpodobně i ke zformování podpovrchového oceánu v hloubce okolo 100–150 km a malého kamenitého jádra.[15]

Pravděpodobná přítomnost podpovrchového oceánu nechává otevřenou možnost, že by Callisto mohl hostit potenciální mimozemský život. Nicméně podmínky pro jeho vznik jsou méně přívětivé než v případě sousední Europy.[16] Měsíc zkoumaly sondy Pioneer 10, Pioneer 11, Galileo a Cassini. Kvůli nízké míře radiace na povrchu měsíce se dlouho uvažovalo o Callisto jako o nejvhodnějším místě pro případnou lidskou základnu pro výzkum Jupiterovy soustavy.[17] Teplota na jeho povrchu se pohybuje od -190 °C do −130 °C.

Objevení a pojmenování

Callisto byl objeven Galileem v lednu 1610 společně s dalšími třemi měsíci Jupiteru: Ganymedem, Io a Europou.[1] Pojmenován byl dle řecké mytologie po jedné z nespočtu milenek Dia Kallistó (Καλλιστώ), což byla nymfa spojovaná s bohyní lovu Artemis.[18] Jméno navrhl Simon Marius,[19] který byl s Galileem ve sporu ohledně připsání prvenství v objevení měsíců. Marius připsal nápad Johnanu Keplerovi.[18] Nicméně se pojmenování Callisto pro měsíc po dlouhou dobu neujalo a měsíc byl označován jako „Jupiter IV“ či „čtvrtý měsíc Jupiteru“ značící jeho pořadí od Jupiteru, jméno se zase začalo používat až v polovině 20. století, kdy bylo objeveno velké množství dalších měsíců.[20]

Oběžná dráha a rotace

Callisto (dole vlevo), Jupiter (vpravo nahoře) a Europa (vlevo dole pod Velkou rudou skvrnou), snímek pořídila sonda Cassini.

Callisto je nejvzdálenější měsíc ze čtyř Galileových měsíců obíhajících kolem Jupiteru. Jupiter obíhá přibližně ve vzdálenosti 1 880 000 km (odpovídá 26,3 poloměrům Jupiteru),[2] což je značně více než u třetího Galileova měsíce Ganymedu, který obíhá ve vzdálenosti 1 070 000 km. Důsledkem této vzdálenosti je to, že se Callisto nepodílí na orbitální rezonanci se třemi dalšími Galileovými měsíci a pravděpodobně se na ní nepodílel ani dříve.[5]

Jako u většiny dalších pravidelných planetárních měsíců je i rotace Callisto vázaná.[3] Délka dne je tak na povrchu Callisto stejně dlouhá jako doba oběhu, tedy přibližně 16,7 pozemského dne. Jeho oběžná dráha je mírně excentrická a ukloněná k Jupiterovu rovníku s orbitální excentricitou a inklinací měnící se kvazi-periodicky vlivem slunečních a planetárních gravitačních perturbací v řádu století. Rozsah změn je mezi 0,0072–0,0076 respektive 0,20–0,60°.[5] Tyto orbitální variace způsobuji sklony v rotační ose (úhel mezi rotační a oběžnou osou) mezi 0,4 až 1,6°.[21]

Dynamická izolace Callisto znamená, že měsíc nebyl nikdy znatelně zahřát slapovým teplem, což mělo důležité důsledky pro jeho vnitřní stavbu a evoluci.[22] Jeho vzdálenost od Jupiteru taktéž znamená, že tok nabitých částic z planetární magnetosféry na měsíční povrch je relativně nízký, až 300 krát méně než je tomu například u Europy. Proto, na rozdíl od dalších Galileových měsíců, mělo ozáření nabitými částicemi relativně malý vliv na povrch Callisto.[6] Hladina radiace na povrchu měsíce odpovídá přibližně 0,01 rem (0,1 mSv) za den.[23]

Fyzikální charakteristika

Složení

Spektrum blízké infračervenému světlu tmavých krátery posetých plání (červený) naznačuje relativně nízkou přítomnost vody (mezi 1 až 2 mikrony) a více horninového materiálu než v impaktních nížinách (Asgard struktura, modrá).

Průměrná hustota Callisto, 1,83 g/cm3,[3] naznačuje složení z kamenného materiálu a vodního ledu v přibližně stejném množství s menším zastoupením nestálých ledů jako například čpavek.[7] Hmotnostní zastoupení ledů se pohybuje mezi 49 až 55 %.[7][15] Přesné složení horninového pláště není známo, ale je podobné složení chondritů typu L či LL, které se od chondritů typu H liší především menším zastoupením železa, vyskytujícím se převážně ve formě oxidů a jen v malé míře ve formě železa metalického. V případě Callisto je hmotnostní poměr železa vůči křemičitanům 0,9 ku 1,3, u Slunce je tento poměr 1:8.[7]

Povrchové albedo Callisto je okolo 20 %.[4] Složení jeho povrchu je pravděpodobně velmi podobné jeho celkovému složení. Infračervená spektroskopie odhalila přítomnost absorpčních čar vodního ledu na vlnových délkách 1,04, 1,25, 1,5, 2,0 a 3,0 mikrometru.[4] Vodní led se zdá být na povrchu Callisto všudypřítomným, s celkovým podílem asi 25–50 %.[8] Analýza snímků v infračerveném a ultrafialovém spektru získaných sondou Galileo a pozorování provedená ze Země odhalila také různé neledové materiály: hořčíkové a železité ložisko hydratovaných křemičitanů,[4] oxid uhličitý,[24] oxid siřičitý[25] a možná amoniak a různé organické sloučeniny.[4][8] Spektrální data ukazují, že měsíční povrch je v malém měřítku extrémně různorodý. Malé kousky ledu z čisté vody jsou smíšeny s kousky směsi ledu a kamení, na které navazují tmavé oblasti složené z neledového materiálu.[4][9]

Povrch měsíce je asymetrický; strana přivrácená k Jupiteru je tmavší než strana odvrácená. U všech ostatních Galileových měsíců je situace obrácená, tedy přivrácená strana je světlejší než odvrácená.[4] Zdá se, že odvrácená strana Callisto je obohacena oxidem uhličitým, kdežto přivrácená strana obsahuje více oxidu siřičitého.[26] Mnoho čerstvých impaktních kráterů na povrchu taktéž ukazuje známky toho, že jsou obohaceny oxidem uhličitým.[26] Celkově se odhaduje, že chemické složení povrchu, hlavně tmavých oblastí, by mohlo být podobné složení asteroidů typu D,[9] jejichž povrch je tvořen uhlíkatým materiálem.

Stavba

Model Callistovo vnitřní struktury ukazuje povrchovou ledovou vrstvu, pravděpodobně vrstvu tekuté vody a ledovo-kamennou vnitřní stavbu.

Povrch Callisto posetý krátery leží na studené, ztuhlé a ledové litosféře, jejíž mocnost je mezi 80 až 150 km.[7][15] Pravděpodobný slaný oceán se nachází mezi 50 až 200 km hluboko pod povrchovou kůrou,[7][15] jak naznačují studie magnetického pole okolo Jupiteru a jeho měsíců.[27][28] Zjistilo se, že Callisto reaguje na proměnné magnetické pole Jupiteru jako ideálně vodivá koule; to znamená, že pole nemůže proniknout dovnitř měsíce, což nabízí možnost přítomnosti vrstvy tvořené vysoce vodivou tekutinou o tloušťce nejméně 10 km.[28] Existence oceánu se jeví více pravděpodobná, pokud voda obsahuje malé množství čpavku či jiné nemrznoucí směsi a to v zastoupení minimálně 5 hmotnostních procent.[15] V tomto případě by oceán mohl být 250 až 300 km hluboký.[7] Pokud by na měsíci oceán neexistoval, ledová kůra by byla pravděpodobně tlustší a dosahovala by mocnosti okolo 300 km.

Pod litosférou a případným oceánem není vnitřní stavba Callisto zcela jednotvárná, ale ani výrazně rozdílná. Údaje pořízené sondou Galileo[3] (zvláště bezrozměrný moment setrvačnosti[pozn. 6] – 0.3549 ± 0.0042 – určený během těsných průletů kolem měsíce) naznačují, že vnitřek měsíce je tvořen stlačenými horninami a směsí ledů s narůstajícím obsahem hornin se zvyšující se hloubkou způsobeným částečným usazováním jednotlivých složek.[7][29] Jinými slovy, Callisto je jen částečně diferenciovaný. Hustota a moment setrvačnosti jsou ve shodě s existencí malého silikátového jádra uprostřed měsíce. Poloměr takového jádra by nemohl překročit 600 km a jeho hustota by ležela mezi 3,1–3,6 g/cm3.[3][7]

Povrchové útvary

Související informace naleznete také v článku Seznam útvarů na Callisto.
Snímek sondy Galileo ukazuje krátery posetou planinu pro ilustraci hladkého povrchu měsíce

Prastarý povrch Callisto je jedním z krátery nejvíce posetých povrchů ve sluneční soustavě.[30] Ve skutečnosti četnost impaktních kráterů na povrchu je blízko nasycení, vznik nového kráteru by vedl k tomu, že starší kráter by byl erodován. Morfologie povrchu je poměrně snadná, jelikož se na povrchu nenacházejí žádné hory, sopky a ani tektonické útvary vzniklé endogenními pochody uvnitř měsíce.[31] Impaktní krátery a několik prstencových struktur společně s doprovodnými trhlinami, srázy a usazeným materiálem tvoří jediné velké útvary, které se na povrchu nacházejí.[9][31]

Povrch Callisto se dá rozdělit na několik geologicky rozdílných jednotek: pláně poseté impaktními krátery, světlé pláně, jasné a tmavé hladké pláně a množství jednotek spojených s několika jednotlivými prstencovými strukturami a impaktními krátery.[9][31] Pláně poseté impaktními krátery tvoří většinu povrchu a představují starou litosféru tvořenou směsí ledu a horninového materiálu. Světlé pláně tvoří jasné impaktní krátery jako Burr a Lofn, stejně tak i zbytky téměř smazaných kráterů a centrální oblasti prstencových struktur.[9] Věří se, že světlé pláně vznikly jako výsledek depozice ledových částic z impaktů. Světlé, hladké planiny tvoří malou část povrchu Callisto. Nacházejí se v okolí hřbetů a údolí spojených se vznikem kráterů Valhalla a Asgard a jako izolovaná místa v krátery posetých planinách. Věřilo se, že jsou spojeny s endogenní aktivitou, ale snímky ve vysokém rozlišení ze sondy Galileo ukázaly, že světlé, hladké planiny korelují se silně popraskaným a kopcovitým terénem a neukazují žádné známky přetvoření povrchu.[9] Snímky ze sondy Galileo odhalily malé, tmavé, hladké oblasti s obecnou velikostí méně než 10 000 km2, které vypadají, jako by obepínaly okolní terén. Pravděpodobně by se mohlo jednat o depozity spojené s kryovulkanismem.[9] Obě skupiny, jak světlé tak i různorodé hladké planiny, jsou mladší a méně poseté krátery než okolní krátery poseté planiny.[9][32]

Impaktní kráter Hár s centrálním vrcholkem. Paprsky sekundárních kráterů pocházející od mladšího impaktu, který vytvořil kráter Tindr v pravém horním rohu.

Průměr impaktních kráterů sahá od 0,1 km, což je spodní hranice rozlišení pořízených snímků, až přes 100 km bez započítání prstencových struktur.[9] Malé krátery s průměrem menším než 5 km mají jednoduše mísovitý tvar či rovné dno. Krátery větší než 5 km a menší než 40 km mají vyvinutý centrální vrcholek. Větší impaktní struktury s průměrem 25 až 100 km mají centrální depresi namísto vrcholku jako například kráter Tindr.[9] Větší krátery s průměrem přes 60 km mohou mít centrální dóm, který vzniká jako výsledek tektonického výzdvihu centrální části kráteru po dopadu[9] jako v případě kráterů Doh a Hár. Malé množství velmi velkých kráterů přesahujících 100 km a světlé impaktní krátery ukazují anomální geometrii centrálního dómu.[9] Krátery na Callisto jsou obvykle mělčí než obdobné krátery na Měsíci.

Snímek pořízený sondou Voyager 1 ukazuje kráter Valhalla, prstencový impaktní útvar s průměrem 3800 km

Největšími impaktními útvary na povrchu Callisto jsou mnohočetné prstencové pánve.[9][31] Dvě jsou enormní. Kráter Valhalla je největší, má světlejší centrální oblast o průměru 600 km a prstence sahající až do vzdálenosti 1 800 km od centra kráteru.[33] Druhý největší kráter je kráter Asgard, který má v průměru 1 600 km.[33] Prstencové struktury vznikly pravděpodobně jako důsledek podopadových deformací projevujících se soustředným popraskáním litosféry ležící na vrstvě měkkého či tekutého materiálu, pravděpodobně oceánu.[34] Dalšími útvary jsou tzv. Catenae, například Gomul Catena, dlouhé řetězy impaktních kráterů ležící v řadě napříč povrchem. Vznikly pravděpodobně dopadem objektů, které byly slapovými silami při blízkém průletu kolem Jupiteru roztrhány a následně dopadly na povrch Callisto, nebo by se mohlo jednat o pozůstatky dopadu tělesa pod nízkým úhlem.[9] Historickým případem rozpadu tělesa vlivem gravitace Jupiteru byl rozpad komety Shoemaker-Levy 9, která následně po rozpadu narazila do Jupiteru. Jak je zmíněno výše, malé oblasti tvořené čistým vodním ledem s vysokým albedem okolo 80 % se nacházejí na povrchu Callisto obklopené mnohem tmavším materiálem.[4] Snímky ve vysokém rozlišení pořízené sondou Galileo ukázaly, že tyto světlejší oblasti jsou umístěny hlavně na vyvýšených místech povrchu jako jsou okraje kráterů, srázy, hřbety a pahorky.[4] Předpokládá se, že jsou tvořeny tenkou vrstvou zmrzlých vodních depozitů. Tmavý materiál obvykle leží v nížinách a obklopuje a částečně přikrývá světlejší útvary. Často vyplňuje dna impaktních kráterů větších než 5 km a mezikráterové deprese.[4]

Dva sesuvy dlouhé 3 až 3,5 km jsou viditelné v pravé části snímku na dnu dvou velkých impaktních kráterů

V rozlišení menším než kilometr se jeví povrch Callisto více degradován než povrch ostatních ledových měsíců ze skupiny Galileových měsíců.[4] Typicky na povrchu chybí malé impaktní krátery s průměrem menším než 1 km ve srovnání například s tmavými planinami na povrchu Ganymedu.[9] Místo malých impaktních kráterů jsou téměř všudypřítomnými povrchovými útvary malé pahorky a deprese.[4] Předpokládá se, že pahorky představují pozůstatky okrajů impaktních kráterů, které byly erodovány zatím neznámým mechanismem.[10] Nejpravděpodobnější se jeví pomalý proces sublimace ledu, což je umožněno teplotou 156 K, které Callisto dosáhne v subsolárním bodu.[4] Takováto sublimace vody či jiných těkavých složek ze špinavého ledu tvořícího podloží způsobí jeho rozklad. Materiál neobsahující led zůstává na povrchu a tvoří úlomkové laviny, které se sesouvají po svazích kráterů.[10] Takovéto laviny jsou často pozorovány poblíž a uvnitř impaktních kráterů.[4][9][10] Stěny kráterů jsou příležitostně přerušeny malými stružkami (anglicky nazývanými gullies), které jsou známé z povrchu Marsu.[4] V hypotéze sublimace ledu je pak nízko ležící tmavý materiál interpretován jako vrstva, která je tvořena částicemi pocházejícími z okraje kráterů bez přítomnosti ledu.

Relativní stáří různých jednotek na povrchu Callisto se dá určit za pomoci četnosti impaktních kráterů, které se na jejich povrchu nacházejí. Čím je povrch starší, tím více impaktních kráterů se na něm nachází.[35] Absolutní datování povrchu zatím neproběhlo, ale na základě teoretických úvah se předpokládá, že krátery poseté planiny jsou okolo 4,5 miliardy let staré, což odpovídá téměř době vzniku sluneční soustavy. Stáří multi-prstencových struktur a impaktních kráterů záleží na zvolené rychlosti vzniku impaktních kráterů a různí autoři se rozcházejí v datování mezi 1 až 4 miliardami let.[9][30]

Atmosféra a ionosféra

Indukované magnetické pole kolem Callisto

Callisto má velmi slabou atmosféru tvořenou oxidem uhličitým.[11] Byla detekována zařízením Near Infrared Mapping Spectrometer (NIMS) na palubě sondy Galileo z absorpcí záření o vlnové délce 4,2 mikrometru. Povrchový tlak atmosféry byl určen na 7,5×10−12 baru a hustota částic na 4×108 cm−3. Jelikož takto slabá atmosféra by se ztratila za pouhé čtyři dny, musí být konstantně doplňována, pravděpodobně sublimací suchého ledu z měsíční ledové kůry,[11] což by bylo ve shodě s hypotézou sublimační degradace povrchu vysvětlující vznik povrchových pahorků.

Ionosféra Callisto byla poprvé detekována během průletu sondy Galileo,[13] její hustota elektronů dosahující (7 až 17)×104 cm−3 nemůže být vysvětlena pouhou fotoionizací atmosférického oxidu uhličitého. Z toho důvodu existuje možnost, že v atmosféře Callisto v současnosti dominuje molekulární kyslík, který je 10 až 100 krát četnější než CO2.[12] Nicméně kyslík zatím nebyl přímo v atmosféře Callisto detekován. Pozorování za pomoci Hubbleova vesmírného dalekohledu (HST) určily horní limit jeho možné koncentrace v atmosféře.[36] V ten samý čas byl HST schopen detekovat kondenzovaný kyslík zachycený na povrchu Callisto.[37]

Původ a vývoj

Částečná diferenciace Callisto (odvozena například z měření momentu setrvačnosti) znamená, že měsíc se nikdy uvnitř nezahřál natolik, aby došlo k roztavení jeho ledové složky.[15] Proto se jako nejvíce pravděpodobný model jeví vznik měsíce pomocí pomalé akrece v nízkohustotní mlhovině tvořené plynem a prachem, obíhající okolo Jupiteru po jeho zformování.[14] Takovýto pomalý stupeň akrece by mohl umožnit držet krok ochlazování měsíce s akumulací tepla způsobenou impakty, rozpadem radioaktivních prvků a kontrakcí měsíce a tím zabránit roztavení materiálu a rychlé diferenciaci.[14] Možný čas potřebný pro vznik Callisto se pak pohybuje mezi 0,1–10 milióny let.[14]

Pohled na erodované (horní) a téměř zcela erodované (dolní) ledové vrcholky (vysoké okolo sta metrů), které byly pravděpodobně zformovány dopadem ejekty vyvržené při vzniku prastarých kráterů.

Pozdější evoluce Callisto po akreci závisela na bilanci tepla z radioaktivních rozpadů, ochlazování tepelnou kondukcí poblíž povrchu a subsolidovou konvekcí uvnitř měsíce.[22] Podrobnosti subsolidové konvekce v ledu jsou zdrojem největších nejistot v modelech všech ledových měsíců. Je známo, že vzniknou, když je teplota dostatečně blízko bodu tání, vzhledem k teplotní závislosti viskozity ledu.[38] Subsolidová konvekce v ledových tělesech je pomalý proces s pohybem ledu okolo 1 cm/rok, ale ve skutečnosti se i tak jedná o velice efektivní chladicí mechanismus z dlouhodobého hlediska.[38] Zdá se, že probíhá v podmínkách, kdy pevná chladná vrstva při povrchu měsíce vede teplo kondukcí, zatímco pod ní se led nachází v subsolidovém stavu, takže může vést teplo konvekcí.[15][38] Vnější konduktivní vrstva u Callisto odpovídá chladné a pevné litosféře o tloušťce 100 km. Její přítomnost by vysvětlila nepřítomnost jakýchkoliv známek vnitřní aktivity na povrchu měsíce.[38][39] Konvekce ve vnitřních částech měsíce může být v různých vrstvách odlišná, protože vlivem vysokých tlaků zde se vodní led vyskytuje v různých krystalických fázích od tzv. ledu I na povrchu až po led VII hluboko uvnitř měsíce.[22] Subsolidová konvekce v nitru Callisto mohla bránit tání ledu ve větším měřítku, takže nemohla proběhnout žádná vnitřní diferenciace tělesa, která by jinak vedla k vytvoření velkého kamenného jádra a ledové kůry. Vlivem konvekčních procesů zde však probíhalo jen velmi pomalé a částečné oddělování kamenných materiálů a ledu, a to v časovém měřítku miliard let, a je možné, že tento proces stále není ukončen.[39]

Podle toho, co zatím o Callisto víme, nelze vyloučit existenci vrstvy či „oceánu“ kapalné vody pod povrchem měsíce. To je spojeno s anomálním chováním ledu krystalické fáze I, jehož teplota tání klesá s tlakem, a to až na 251 Kelvinů při tlaku 2 070 barů.[15] Ve všech realistických modelech vnitřní stavby Callisto teplota ve vrstvě v hloubce mezi 100–200 km je velmi blízko této anomální teploty tání nebo ji lehce překračuje.[22][38][39] Přítomnost i malého množství čpavku (okolo 1–2 hmotnostních %) téměř garantuje existenci kapalné vrstvy, jelikož čpavek dále snižuje teplotu tání.[15]

Zatímco objemově je Callisto velice podobný Ganymedu, jeho geologická historie byla pravděpodobně jednodušší. Povrch Callisto byl snad formován impakty a dalšími exogenními pochody.[9] Na rozdíl od sousedního Ganymedu, který má povrch pokryt rýhami, existuje jen málo náznaků o tektonických procesech na Callisto.[8] Relativně jednoduchá geologická historie Callisto tak umožňuje planetologům využívat měsíc jako referenční těleso pro srovnávací studie s více aktivními a komplexními světy.[8]

Možný život v oceánu

Podobně jako v případě Europy a Ganymedu, i na Callisto by se potenciálně mohl nacházet mimozemský mikrobiální život ve slaném oceánu pod povrchem Callisto.[16] Nicméně případné životní podmínky na Callisto jsou nehostinnější než u Europy. Hlavními důvody jsou nedostatek spojení s pevným materiálem a nižší tepelný tok z vnitřních oblastí Callisto.[16] Torrence Johnson k možnosti života na Callisto ve srovnání s dalšími Galileovo měsíci řekl:[40]

Základní ingredience pro život, které my nazýváme „pre-biotická chemie“, jsou četné na mnohých tělesech sluneční soustavy, jako jsou komety, asteroidy a ledové měsíce. Biologové předpokládají, že pro podporu života je potřeba kapalná voda a energie, takže je vzrušující najít další svět, kde by kapalná voda mohla existovat. Ale energie je dalším předpokladem a v současnosti je oceán Callisto zahříván pouze rozpady radioaktivních prvků, kdežto Europa má navíc ještě teplo produkované slapovými jevy kvůli blízkosti k Jupiteru.

Na základě výše zmíněného názoru a dalších vědeckých pozorování se věří, že největší možnost výskytu mimozemského bakteriálního života je na Europě.[16][41]

Průzkum

Průlety amerických sond Pioneer 10 a Pioneer 11 kolem Jupiteru v 70. letech 20. století přinesly jen málo nových informací, které by nebyly známé z pozorování pozemskými teleskopy.[4] Průlom přišel až s další generací amerických sond Voyager 1 a Voyager 2, které Joviánskou soustavou prolétly mezi roky 1979 až 1980. Sondy pořídily snímky téměř poloviny povrchu Callisto s rozlišením mezi 1 až 2 kilometry na pixel, určily přesně teplotu povrchu, hmotnost a tvar.[4] Druhá část výzkumu proběhla mezi lety 1994 až 2003, když kolem měsíce osmkrát těsně prolétla další americká sonda Galileo. Poslední průlet C30 v roce 2001 se odehrál jen 138 km nad povrchem měsíce. Sonda Galileo dokončila snímkování povrchu s množstvím snímků o rozlišení 15 metrů u vybraných oblastí.[9] V roce 2000 sonda Cassini, na své cestě k Saturnu, pořídila v infračerveném spektru vysoce kvalitní snímky všech Galileových měsíců včetně Callisto.[24] Mezi únorem až březnem roku 2007 pořídila nové snímky ve viditelném světle a provedla spektrální měření sonda New Horizons na své cestě k Plutu.[42]

Na rok 2020 se plánuje start společného projektu americké NASA a evropské ESA s názvem Europa Jupiter System Mission (EJSM) za účelem výzkumu Jupiterových měsíců. V únoru 2009 bylo oznámeno, že projektu se dává přednost před misí Titan Saturn System Mission.[43] Mise EJSM sestává z Jupiter Europa Orbiter pod patronací NASA a Jupiter Ganymede Orbiter vedenou ESA.[44]

Případná kolonizace

Umělecká představa základny na povrchu Callisto[45]

V roce 2003 provedla americká NASA studii nazvanou „Human Outer Planets Exploration“ (HOPE) týkající se budoucího pilotovaného průzkumu vnějších oblastí sluneční soustavy. Cílem detailního výzkumu se stal měsíc Callisto.[17][46]

V rámci studie se zvažovalo využití Callisto jako potenciálního tělesa, kde by se mohla postavit povrchová základna využívaná pro produkci paliva potřebného pro průzkum vnějších oblastí sluneční soustavy.[45] Výhody Callisto jsou nižší radiace, jelikož se měsíc nachází nejdále z Galileových měsíců, a geologická stabilita povrchu. Stálá základna by mohla být využita během průzkumu Europy, či by byla ideálně umístěna pro servis lodí pro průzkum vnějších okrajů sluneční soustavy, které by kolem Jupiteru prolétaly za použití efektu gravitačního praku po zastávce na Callisto.[17]

Ve zprávě z prosince 2003 NASA uvedla, že by se pokus o pilotovanou misi ke Callisto mohl uskutečnit ve 40. letech 21. století.[47]

Odkazy

Poznámky

  1. Apocentrum je odvozeno od vedlejší osy a a excentricity e: .
  2. Plocha povrchu je odvozena z poloměru r: .
  3. Objem v je odvozen z poloměru r: .
  4. Povrchová gravitace odvozena z hmotnosti m, gravitační konstanty a poloměru r: .
  5. Úniková rychlost odvozena z hmotnosti m, gravitační konstanty a poloměru r: .
  6. Bezrozměrný moment setrvačnosti lze vypočítat jako I/(mr^2), kde I je moment setrvačnosti, m hmotnost a r střední poloměr. Pro homogenní kouli je bezrozměrný moment roven 0,4, avšak čím více hustota roste směrem ke středu, tím je hodnota nižší.

Reference

V tomto článku byl použit překlad textu z článku Callisto (moon) na anglické Wikipedii.

  1. a b c Galilei, G.; Sidereus Nuncius (March 13, 1610)
  2. a b c d e Planetary Satellite Mean Orbital Parameters . Jet Propulsion laboratary, California Institute of Technology. Dostupné online. 
  3. a b c d e f g h ANDERSON, J. D., Jacobson, R. A.; McElrath, T. P.; et al.. Shape, mean radius, gravity field and interior structure of Callisto. Icarus. 2001, roč. 153, s. 157–161. Dostupné online. DOI 10.1006/icar.2001.6664. 
  4. a b c d e f g h i j k l m n o p q r s Bagenal, F.; Dowling, T.E.; McKinnon, W.B., Chapman, Clark R.; Bierhaus, Edward B. et al. Callisto. : Cambridge University Press, 2004. Dostupné online.  Archivováno 27. 3. 2009 na Wayback Machine.
  5. a b c MUSOTTO, Susanna, Varadi, Ferenc; Moore, William; Schubert, Gerald. Numerical Simulations of the Orbits of the Galilean Satellites. Icarus. 2002, roč. 159, s. 500–504. Dostupné online. DOI 10.1006/icar.2002.6939. 
  6. a b COOPER, John F., Johnson, Robert E.; Mauk, Barry H.; et al. Energetic Ion and Electron Irradiation of the Icy Galilean Satellites. Icarus. 2001, roč. 139, s. 133–159. Dostupné v archivu pořízeném dne 25-02-2009. DOI 10.1006/icar.2000.6498.  Archivováno 25. 2. 2009 na Wayback Machine.
  7. a b c d e f g h i KUSKOV, O.L., Kronrod, V.A. Internal structure of Europa and Callisto. Icarus. 2005, roč. 177, s. 550–369. Dostupné online. DOI 10.1016/j.icarus.2005.04.014. 
  8. a b c d e SHOWMAN, Adam P., Malhotra, Renu. The Galilean Satellites. Science. 1999, roč. 286, s. 77–84. Dostupné online . DOI 10.1126/science.286.5437.77. PMID 10506564.  Archivováno 14. 5. 2011 na Wayback Machine.
  9. a b c d e f g h i j k l m n o p q r s t u GREELEY, R., Klemaszewski, J. E.; Wagner, L.; et al.. Galileo views of the geology of Callisto. Planetary and Space Science. 2000, roč. 48, s. 829–853. Dostupné online. DOI 10.1016/S0032-0633(00)00050-7. 
  10. a b c d MOORE, Jeffrey M., Asphaug, Erik; Morrison, David; et al. Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission. Icarus. 1999, roč. 140, s. 294–312. Dostupné online. DOI 10.1006/icar.1999.6132. 
  11. a b c CARLSON, R. W., et al.. A Tenuous Carbon Dioxide Atmosphere on Jupiter's Moon Callisto. Science. 1999, roč. 283, s. 820–821. Dostupné v archivu pořízeném dne 2008-10-03. DOI 10.1126/science.283.5403.820. PMID 9933159.  Archivováno 3. 10. 2008 na Wayback Machine.
  12. a b LIANG, M. C., Lane, B. F.; Pappalardo, R. T.; et al.. Atmosphere of Callisto. Journal of Geophysics Research. 2005, roč. 110, s. E02003. Dostupné v archivu pořízeném dne 12-12-2011. DOI 10.1029/2004JE002322.  Archivováno 25. 2. 2009 na Wayback Machine.
  13. a b KLIORE, A. J., Anabtawi, A; Herrera, R. G.; et al.. Ionosphere of Callisto from Galileo radio occultation observations. Journal of Geophysics Research. 2002, roč. 107, s. 1407. Dostupné online. DOI 10.1029/2002JA009365. 
  14. a b c d CANUP, Robin M., Ward, William R. Formation of the Galilean Satellites: Conditions of Accretion. The Astronomical Journal. 2002, roč. 124, s. 3404–3423. Dostupné online . DOI 10.1086/344684. 
  15. a b c d e f g h i SPOHN, T., Schubert, G. Oceans in the icy Galilean satellites of Jupiter?. Icarus. 2003, roč. 161, s. 456–467. Dostupné v archivu pořízeném dne 27-02-2008. DOI 10.1016/S0019-1035(02)00048-9.  Archivováno 27. 2. 2008 na Wayback Machine.
  16. a b c d LIPPS, Jere H., Delory, Gregory; Pitman, Joe; et al. Astrobiology of Jupiter’s Icy Moons. Proc. SPIE. 2004, roč. 5555, s. 10. Dostupné v archivu pořízeném dne 20-08-2008. DOI 10.1117/12.560356.  Archivováno 20. 8. 2008 na Wayback Machine.
  17. a b c TRAUTMAN, Pat, Bethke, Kristen. Revolutionary Concepts for Human Outer Planet Exploration (HOPE) . NASA, 2003 . Dostupné v archivu pořízeném dne 19-01-2012. 
  18. a b Satellites of Jupiter . The Galileo Project . Dostupné online. 
  19. Marius, S.. Mundus Iovialis anno M.DC.IX Detectus Ope Perspicilli Belgici. : , 1614. Dostupné online. 
  20. BARNARD, E. E. Discovery and Observation of a Fifth Satellite to Jupiter. Astronomical Journal. 1892, roč. 12, s. 81–85. Dostupné online. DOI 10.1086/101715. 
  21. BILLS, Bruce G. Free and forced obliquities of the Galilean satellites of Jupiter. Icarus. 2005, roč. 175, s. 233–247. Dostupné online. DOI 10.1016/j.icarus.2004.10.028. 
  22. a b c d FREEMAN, J. Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto. Planetary and Space Science. 2006, roč. 54, s. 2–14. Dostupné v archivu pořízeném dne 24-08-2007. DOI 10.1016/j.pss.2005.10.003.  Archivováno 24. 8. 2007 na Wayback Machine.
  23. Frederick A. Ringwald. SPS 1020 (Introduction to Space Sciences) online. California State University, Fresno, 2000-02-29 cit. 2009-07-04. Dostupné v archivu pořízeném dne 2009-09-20. 
  24. a b BROWN, R. H., Baines, K. H.; Bellucci, G.; et al.. Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini’s Flyby of Jupiter. Icarus. 2003, roč. 164, s. 461–470. Dostupné online. DOI 10.1016/S0019-1035(03)00134-9. 
  25. NOLL, K.S. Detection of SO2 on Callisto with the Hubble Space Telescope pdf. Lunar and Planetary Science XXXI, 1996 cit. 2010-06-18. S. 1852. Dostupné v archivu pořízeném dne 2016-06-04. 
  26. a b HIBBITTS, C.A., McCord, T. B.; Hansen, G.B. Distributions of CO2 and SO2 on the Surface of Callisto pdf. Lunar and Planetary Science XXXI, 1998 cit. 2010-06-18. S. 1908. Dostupné v archivu pořízeném dne 2016-06-04. 
  27. KHURANA, K. K., et al.. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature. 1998, roč. 395, s. 777–780. Dostupné online pdf. DOI 10.1038/27394. 
  28. a b ZIMMER, C., Khurana, K. K. Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations. Icarus. 2000, roč. 147, s. 329–347. Dostupné online pdf. DOI 10.1006/icar.2000.6456. 
  29. ANDERSON, J. D., Schubert, G.; Jacobson, R. A.; et al.. Distribution of Rock, Metals and Ices in Callisto. Science. 1998, roč. 280, s. 1573–1576. Dostupné v archivu pořízeném dne 26-09-2007. DOI 10.1126/science.280.5369.1573. PMID 9616114.  Archivováno 26. 9. 2007 na Wayback Machine.
  30. a b ZAHNLE, K., Dones, L. Cratering Rates on the Galilean Satellites. Icarus. 1998, roč. 136, s. 202–222. Dostupné v archivu pořízeném dne 27-02-2008. DOI 10.1006/icar.1998.6015.  Archivováno 27. 2. 2008 na Wayback Machine.
  31. a b c d Bender, K. C.; Rice, J. W.; Wilhelms, D. E.; Greeley, R. Geological map of Callisto online. U.S. Geological Survey, 1997. Dostupné online. 
  32. Wagner, R.; Neukum, G.; Greeley, R; et al. (March 12–16, 2001). "Fractures, Scarps, and Lineaments on Callisto and their Correlation with Surface Degradation" (pdf). 32nd Annual Lunar and Planetary Science Conference. 
  33. a b Controlled Photomosaic Map of Callisto JC 15M CMN online. 2002. vyd. U.S. Geological Survey. Dostupné online. 
  34. KLEMASZEWSKI, J.A., Greeley, R. Geological Evidence for an Ocean on Callisto pdf. Lunar and Planetary Science XXXI, 2001. S. 1818. Dostupné online. 
  35. CHAPMAN, C.R., Merline, W.J.; Bierhaus, B.; et al. Populations of Small Craters on Europa, Ganymede, and Callisto: Initial Galileo Imaging Results pdf. Lunar and Planetary Science XXXI, 1997. S. 1221. Dostupné online. 
  36. STROBEL, Darrell F., Saur, Joachim; Feldman, Paul D.; et al. Hubble Space Telescope Space Telescope Imaging Spectrograph Search for an Atmosphere on Callisto: a Jovian Unipolar Inductor. The Astrophysical Journal. 2002, roč. 581, s. L51–L54. Dostupné online. DOI 10.1086/345803. 
  37. SPENCER, John R., Calvin, Wendy M. Condensed O2 on Europa and Callisto. The Astronomical Journal. 2002, roč. 124, s. 3400–3403. Dostupné online pdf. DOI 10.1086/344307. 
  38. a b c d e MCKINNON, William B. On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto. Icarus. 2006, roč. 183, s. 435–450. Dostupné online. DOI 10.1016/j.icarus.2006.03.004. 
  39. a b c NAGEL, K.a, Breuer, D.; Spohn, T. A model for the interior structure, evolution, and differentiation of Callisto. Icarus. 2004, roč. 169, s. 402–412. Dostupné online. DOI 10.1016/j.icarus.2003.12.019. 
  40. PHILLIPS, T. Callisto makes a big splash online. Science@NASA, 1998-10-23 cit. 2010-06-28. Dostupné v archivu pořízeném dne 2009-12-29. 
  41. FRANÇOIS, Raulin. Exo-Astrobiological Aspects of Europa and Titan: from Observations to speculations. Space Science Reviews. 2005, roč. 116, s. 471–487. Dostupné online pdf. DOI 10.1007/s11214-005-1967-x. [nedostupný zdroj
  42. MORRING, F. Ring Leader. Aviation Week & Space Technology. 2007-05-07, s. 80–83. 
  43. RINCON, Paul. Jupiter in space agencies' sights online. BBC News, 2009-02-20 cit. 2009-02-20. Dostupné online. 
  44. Europa Jupiter System Mission (EJSM) online. NASA cit. 2009-08-09. Dostupné v archivu pořízeném dne 11-08-2009. 
  45. a b Vision for Space Exploration pdf. NASA, 2004. Dostupné online. 
  46. TROUTMAN, Patrick A., Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L. Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A. Revolutionary Concepts for Human Outer Planet Exploration (HOPE). American Institute of Physics Conference Proceedings. 28 January 2003, roč. 654, s. 821–828. DOI 10.1063/1.1541373. 
  47. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto online. NASA cit. 2010-02-14. Dostupné v archivu pořízeném dne 2012-07-02. 

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Callisto
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Úhoř říční
Úmrtí v roce 2021
Úmrtí v roce 2022
Úmrtí v roce 2023
Ústava České republiky
Ústava Spojených států amerických
Ústavní soud Republiky Slovinsko
Ústecko-teplická dráha
Časová osa ruské invaze na Ukrajinu
Čeněk Růžička
Čeng-te
Čeng Che
Černá Hora
Červená pyramida
Česká Wikipedie
Československý pavilon na Světové výstavě 1967
Členské státy NATO
Říše Ming
Šachy
Šatovník šarlatový
Šelmy
Šiveluč
Škoda Felicia
Škrkavka psí
Švédština
Ťia-ťing
Železniční trať Frýdlant v Čechách – Heřmanice
Žhářský útok na Kyoto Animation
Židé na Moravě ve středověku
Židovská legie
Židovská národní rada
Žitava
1. červen
1. březen
1. leden
1. prosinec
1. srpen
1. září
10. únor
10. říjen
10. březen
10. květen
10. leden
10. září
11. červen
11. červenec
11. říjen
11. duben
11. květen
11. leden
11. září
12. únor
12. červen
12. červenec
12. březen
12. duben
12. leden
12. prosinec
12. srpen
12. září
13. únor
13. říjen
13. březen
13. duben
13. leden
13. listopad
13. srpen
1303
14. únor
14. červen
14. červenec
14. březen
14. duben
14. leden
14. listopad
14. srpen
14. září
1418
15. únor
15. červen
15. červenec
15. říjen
15. duben
15. květen
15. leden
15. listopad
16. únor
16. červen
16. říjen
16. březen
16. květen
16. leden
16. prosinec
16. srpen
17. únor
17. červen
17. červenec
17. březen
17. duben
17. květen
17. leden
17. prosinec
17. srpen
17. září
18. únor
18. červen
18. duben
18. květen
18. leden
18. prosinec
18. srpen
1884
19. květen
19. leden
19. listopad
19. srpen
19. září
1913
1923
1963
2. červen
2. červenec
2. duben
2. květen
2. leden
2. listopad
2. září
20. únor
20. červen
20. červenec
20. říjen
20. duben
20. leden
20. listopad
20. srpen
2008
2021
2022
2022 ve filmu
2022 ve fotografii
2022 ve sportu
2022 v dopravě
2022 v hudbě
2022 v letectví
2022 v loďstvech
2023
2023 ve filmu
2023 ve fotografii
2023 ve sportu
2023 v dopravě
2023 v hudbě
2023 v letectví
2023 v loďstvech
21. únor
21. červen
21. červenec
21. říjen
21. březen
21. duben
21. květen
21. leden
22. červen
22. říjen
22. březen
22. duben
22. leden
22. srpen
22. září
23. červenec
23. říjen
23. duben
23. květen
23. leden
23. září
238
24. únor
24. červen
24. červenec
24. listopad
24. srpen
25. únor
25. červen
25. říjen
25. březen
25. duben
25. prosinec
25. srpen
26. únor
26. červen
26. březen
26. leden
26. srpen
27. únor
27. červen
27. červenec
27. březen
27. duben
27. květen
27. leden
27. srpen
28. červenec
28. březen
28. duben
28. leden
28. listopad
28. srpen
28. září
29. červen
29. březen
29. květen
29. listopad
29. prosinec
29. září
3. únor
3. červenec
3. říjen
3. duben
3. květen
3. leden
3. srpen
30. červen
30. červenec
30. květen
30. prosinec
30. srpen
30. září
31. červenec
31. říjen
31. březen
31. leden
31. prosinec
31. srpen
4. červen
4. duben
4. květen
4. leden
5. únor
5. červen
5. duben
5. květen
5. leden
5. listopad
5. prosinec
5. srpen
5. září
6. únor
6. červen
6. březen
6. duben
6. květen
6. leden
6. listopad
6. září
617. peruť RAF
7. únor
7. červen
7. březen
7. duben
7. květen
7. leden
7. prosinec
7. srpen
7. září
8. únor
8. červenec
8. říjen
8. leden
8. listopad
8. prosinec
9. únor
9. červen
9. březen
9. duben
9. leden
9. prosinec
9. září
95 tezí
Aaron Spelling
Abel Posse
Achdut ha-avoda
Ahmad Jamal
Ahmose I.
Albatrosovití
Alena Šrámková
Alex Napier
Alfred Stieglitz
Alija
Aloe pravá
André Kertész
Angélique du Coudray
Anglie očekává, že každý muž splní svou povinnost
Antonín Bajaja
Antonín Juran
Antonín Kachlík
Aranka Szentpétery
Archea
Archimédés
Ariane 5
Arthur Conan Doyle
Atentát na Johna Fitzgeralda Kennedyho
Atentát na Roberta Francise Kennedyho
Aun Schan Su Ťij
Avšalom Feinberg
Břetislav Olšer
Bakterie
Balbinus
Balduin I. Jeruzalémský
Barnardova šipka
Bar Giora
Bedřich Smetana
Benjamin J. Almoneda
Ben Ferencz
Bettie Page
Bitva u Hattínu
Blanka Kulínská
Blanka Vogelová
Bořek Mezník
Boca Chica (Texas)
Bohemund z Tarentu
Bohuslav Korejs
Bolševici
Borovice
Bowling
Brucelóza
Buddhové z Bámjánu
Budyšín
Byzantská říše
Callisto
Carl Hahn
Carmen
Chřástal laysanský
Chana Senešová
Chansons de geste
Charles Simic
Chung-č’
Chung-wu
Chung-wuovy reformy
Chu Čeng-jen
Chu Cung-sien
Commons:Featured pictures/cs
Craig Breen
Crosby, Stills, Nash and Young
Cykasy
Dácie
Dějiny Pitcairnových ostrovů
Dějiny Tibetu
Dalimil Klapka
Dana Hlobilová
Dana Němcová
Dana Vachtová
David Ben Gurion
David Crosby
Deklarace nezávislosti Státu Izrael
Denys Monastyrskyj
Dingo
DNA
Donald Trump
Drahomíra Drobková
Dronte mauricijský
Druhá křížová výprava
Druhá plavba Jamese Cooka
Druhá světová válka
Dušan Klein
Eduard Burget
Eduard Marek
Eduard Ovčáček
Eduard Parma
Edward R. Pressman
Elektronvolt
Elena Pampulovová
Emilia Galotti
Emil Boček
Emil Kintzl
Encyklopedie
Ernesto Castano
Ervín Kukuczka
Esperanto
Etnologie
Eukaryota
Europa (měsíc)
Eva Melmuková
Eva Zaoralová
Evoluce
Evropa
Evropská kosmická agentura
Evropská unie
Fascioloides magna
Fay Weldonová
Felix Kolmer
Ferenc Mészáros
Finsko
František Cipro
František Dostál (fotograf)
František Fiktus
František Lobkowicz
František Plass
František Valošek
František Vrhel
František Zavadil (politik)
Gáspár Miklós Tamás
Görlitz
Galileovy měsíce
Ganymedes (měsíc)
Gejzír
George Pell
George S. Zimbel
Gergely Homonnay
Gianluca Vialli
Gina Lollobrigida
Gioacchino Rossini
Godefroy z Bouillonu
Golda Meirová
Gordana Kuić
Gotthold Ephraim Lessing
Gustav Oplustil
Ha-Šomer
Hadždž
Hagana
Hana Bauerová
Hana Horká
Hana Truncová
Hana Zagorová
Hans Belting
Hanuš Bartoň
Harappská kultura
Haumea (trpasličí planeta)
Hejnice
Helena Bambasová
Henri de Toulouse-Lautrec
Histadrut
Hlístice
Hlavní strana
Holubí fotografie ze vzduchu
Homotherium
Homo floresiensis
Hubert Krejčí
Hugo Engelhart
Husitství
Hynek Krušina I. z Lichtenburka
Ignác Antonín Hrdina
Inaugurační diplomy
Inna Čurikovová
Io (měsíc)
Irbis
Istanbulská univerzita
Ivana Hloužková
Ivana Pavlová
Ivana Trumpová
Ivan Dubský
Ivan Hanousek
Ivan Kučírek
Ivan Sedláček
Ivan Vyskočil
Ivar Otruba
Ivo Babuška
Izrael
Ján Zákopčaník
Jacques Gaillot
Jakov Milatović
Jakub Dürr
Jakub Gurecký
Jana Šmardová
Jana Šulcová (herečka)
Jana Andrsová
Jana Gazdíková
Jana Lorencová
Jan Žižka (bubeník)
Jan Jůn
Jan Klein
Jan Knaisl
Jan Kostrhun
Jan Mrvík
Jan Nekovář
Jan Pavlásek
Jarmila Pokorná
Jaromír Čejka
Jaromír Jágr starší
Jaromír Málek
Jaromír Vogel
Jaroslav Čejka
Jaroslav Šedivý
Jaroslav Škarvan
Jaroslav Bogdálek
Jaroslav Falta
Jaroslav Jugas
Jaroslav Kurzweil
Jaroslav Marčík
Jaroslav Olša
Jaroslav Petr (grafik)
Jaroslav Vízner
Jaroslav Wykrent
Jean-Claude Lemagny
Jedle
Jedlová (Lužické hory)
Jeff Beck
Jejkov
Jens Jørgen Hansen
Jeruzalém
Jeruzalémské království
Jiří Černý (hudební kritik)
Jiří Šalamoun
Jiří Šetlík
Jiří Hůla
Jiří Holenda
Jiří Janáček
Jiří Kaše
Jiří Kománek
Jiří Kraus
Jiří Kulíček
Jiří Kyncl
Jiří Macháně
Jiří Markovič
Jiří Pechar
Jiří Plachý mladší
Jiří Pliska
Jiří Ramba
Jiří Roháček
Jiří Srkal
Jiří Svoboda (kněz)
Jiří Václav Hampl
Jiří Večerek
Jiří Waldhauser
Jiří Zídek (1944)
Jiřetín pod Jedlovou
Jicchak Ben Cvi
Jicchak Rabin
Jindřich VII. Lucemburský
Jindřich z Lichtenburka
Jitka Krupová
Jitka Svobodová
John Cale
Jorge O. Calvo
Josef Šorm
Josef Abrhám
Josef Alois Náhlovský
Josef Dobrovský
Josef Forbelský
Josef Havel (spisovatel)
Josef Jařab
Josef Paldus (matematik)
Josef Panáček
Josef Rusek
Josef Sůva
Josef Somr
Josef Vojta
Josephsonův jev
Josep Fusté
Jukihiro Takahaši
Juliana Jirousová
Jung-le
Jupiter (planeta)
Jupiter Icy Moons Explorer
Jurij Gagarin
Křížové výpravy
Křižácká tažení do Egypta
Kamčatka
Karel Holomek
Karel Kaplan
Karel Meloun
Karel Pala
Karel Pezl
Karel Richter (herec)
Karl Alexander Müller
Karpaty
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Ken Block
Keporkak
Kidd Jordan
Kiviové
Kivi Owenův
Klas Lestander
Komunismus
Kondor krocanovitý
Konference v Cun-i
Konstantin II. Řecký
Koroun bezzubý
Kostel Navštívení Panny Marie (Lobendava)
Kostel Nejsvětější Trojice (Fulnek)
Kostel svatého Mikuláše (Mikulášovice)
Kostel U Jákobova žebříku
Kostnický koncil
Kristina Taberyová
Kuiperův pás
Květa Pacovská
Kytovci
Láčkovka rádža
Létavec stěhovavý
Lachtan Forsterův
Ladislav Trojan
Laločník ostrozobý
Lenka Šmídová (operní pěvkyně)
Leoš Středa
Leonard Cohen
Levhart skvrnitý
Lišejník
Libor Krejcar
Libor Pešek
Libuše Hlubučková
Lidová křížová výprava
Lisa Marie Presleyová
Lisa Miková
Loďstvo Čeng Chea
Lockheed F-117 Nighthawk
Lorenzo I. Medicejský
Lužické hory
Lubomír Štrougal
Lubomír Malý
Lucile Randonová
Luděk Korpa
Ludmila Vaňková
Múte Bourup Egede
Měchožil bublinatý
Městské divadlo Brno
Městské divadlo Mladá Boleslav
Mahulena Čejková
Makúrie
Mamlúci
Mantela zlatá
Mapaj
Marek Kopelent
Margita Havlíčková
Marie Alžběta Salm-Reifferscheidt-Raitz
Marie Durnová
Marie Kovářová
Marie Krčmová
Marie Poledňáková
Marilyn Staffordová
Markéta Goetz-Stankiewicz
Mars (planeta)
Martin Šustr
Martin Hampl
Martin Pěnička
Martin Povejšil
Martin Těšitel
Marxismus
Mary Quantová
Matěj Hlaváček
Maurjovská říše
Meda Mládková
Megadeth
Megalodon
Menachem Begin
Merkur (planeta)
Mesiáš (Händel)
Messier 87
Michael Drozd
Michal Ambrož
Michal Reiman
Migrace ptáků
Mikio Sató
Milan Dvořák (fotbalista)
Milan Galvas
Milan Pešák
Milan Schelinger
Milan Slepička
Milena Šimsová
Miloš Budík
Miloš Horanský
Miloslav Netušil
Miloslav Pelc
Miloslav Uličný
Miloslav Ziegler
Milo Đukanović
Miluška Havlůjová
Mingská ekonomika
Mingská správa
Miroslav Řepa
Miroslav Bureš
Miroslav Kapoun (politik KSČ)
Miroslav Koval
Miroslav Lacký
Miroslav Termer
Miroslav Toman (1935)
Miroslav Vacek
Mlhovinová hypotéza
Mořkov
Modeste M'bami
Mojmír Petráň
Mongolové
Mukarram Jah
Muzeum Litovel
Myanmar
Mystacina novozélandská
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní liga pro demokracii
Nástup Lucemburků na český trůn
Naďa Urbánková
Nadace Wikimedia
Napoleon Bonaparte
Neil Armstrong
Nejvyšší soud České republiky
Neptun (planeta)
Nigel Lawson
Nightwish
Niizuki
Nikifor Černigovskij
Nirvana
Norština
Norské moře
Novinářská fotografie
Nukleárie
Olaf Hanel
Olga Valeská
Operace Chastise
Orangutan
Orel klínoocasý
Orlí mlhovina
Osmero
Otmar Brancuzský
Otta Bednářová
Přechod Venuše
Přehrada Desná
Přemysl Otakar I.
Přemysl Otakar II.
Padělek
Palestina v osmanském období
Paul Johnson
Pavel Žur
Pavel Bobošík
Pavel Fojtík
Pavel Hazuka
Pavel Horák (politik)
Pavel Lebeda
Pavel Pecháček
Pavel Smetáček
Pavel Taussig (filmový historik)
Pavel Vaculík
Petra Oriešková
Petra Skoupilová
Petrohrad
Petruška Šustrová
Petr Berounský
Petr Hořejš
Petr Hošek (hudebník)
Petr Klíma
Petr Kolář (kněz)
Petr Kužvart
Petr Pavlásek
Petr Růžička (tesař)
Petr Sommer
Planeta opic
Plastidová DNA
Plavby Čeng Chea
Plexis
Ploštěnci
Ploutvonožci
Pluto (trpasličí planeta)
Po'alej Cijon
Pokřovník alpínský
Poltava
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Povstání An Lu-šana
Povstání rudých turbanů
Průlet meteoroidu atmosférou Země 13. října 1990
Pražská německá literatura
Pravda (noviny)
Prezident Černé Hory
Prezident Izraele
Primáti
Proxima Centauri
První bulharská říše
Pseudonym
Puma americká
Pupienus
Růže
Radan Dolejš
Radan Květ
Radim Šrám
Radim Uzel
Radko Pytlík
Raimond IV. z Toulouse
Rajmund z Lichtenburka
Religionistika
Renaud ze Châtillonu
Richard Kania
Richard Leakey
Roberto Dinamite
Robert II. Flanderský
Robert Segmüller
Rodné jméno
Roman Ráž
Rosi Mittermaierová
Rostislav Václavíček
Rozptýlený disk
Roztroušená skleróza
Rudolf Matys
Rudolf Svoboda (fotbalista)
Rudolf Zavadil
Ruská invaze na Ukrajinu
Ruské impérium
Rusko
Rusko-čchingská válka
Ruslan Chasbulatov
Rypouš sloní
Sára Aaronsohnová
Sabaton
Saturn (planeta)
Saturn I
Sergio Gori
Severoatlantická aliance
Seznam členů posádky Bounty
Seznam kosmických letů programu Apollo
Seznam kostelů v Brně
Seznam mingských císařů
Seznam návštěvních posádek Mezinárodní vesmírné stanice
Seznam prezidentů Spojených států amerických
Seznam prezidentských vet Václava Havla
Seznam prezidentských vet Václava Klause
Sibiř
Sionismus
Slayer
Slintavka a kulhavka
Soňa Červená
Sopečná erupce
Soubor:Audio a.svg
Soubor:Bahn aus Zusatzzeichen 1024-15.svg
Soubor:Bettie Page-2.jpg
Soubor:Clipboard.svg
Soubor:Crystal Project konquest.png
Soubor:David face.png
Soubor:Exquisite-kspread.png
Soubor:Flag of Koryakia.svg
Soubor:Gnome-globe.svg
Soubor:Gold piece.png
Soubor:Hoplite helmet.svg
Soubor:Justice and law.png
Soubor:Narodni Divadlo, Estates Theater, Prague - 8638.jpg
Soubor:Nuvola apps català.png
Soubor:Nuvola apps clock.png
Soubor:Nuvola apps kuickshow.png
Soubor:ReligiousSymbols.png
Soubor:Sabres.svg
Soubor:Sports and games.png
Soubor:Yitzhak Ben-Zvi.jpg
Souhvězdí Persea
SpaceX
SpaceX South Texas launch site
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Spitzerův vesmírný dalekohled
Spojené státy americké
Squadron leader
Stanislava Kučerová
Stanislav Fišer
Stanislav Neveselý
Stanislav Rudolf
Stanislav Tereba
Staroměstský orloj
Starship (SpaceX)
Starship Test Flight
Stavovské divadlo
Stefan Wojnecki
Strunovci
Sungská správa
Světový operní repertoár
Třída Furutaka
Třebíč
Tanečnice (Šluknovská pahorkatina)
Tau Ceti
Texas
The Byrds
The Doors
Tichomir Mirkovič
Tolštejn
Tomáš Krystlík
Tomáš Kvapil
Tomáš Voženílek
Tosca
Traktor (píseň)
Trubkonosí
Turek (stroj)
Tygr jávský
Ukrajinská opera
Uran (planeta)
Uriah Heep
Václav Čičatka
Václav II.
Václav III.
Václav Jelínek (špión)
Václav Kahuda
Václav Kefurt
Václav Skalník
Václav Skurovec
Václav Týfa
Vítězslav Bouchner
Vítězslav Kotásek
Vítězslav Mácha
Vítězslav Welsch
Vít Červenka
Věra Beranová
Věra Gissingová
Věra Jordánová
Věra Provazníková
Věslav Michalik
Vačnatci
Vachtang Kikabidze
Valentina Thielová
Varšavské pokleknutí
Varan komodský
Varnsdorf
Vasil Timkovič
Venuše (planeta)
Viktor Fajnberg
Viktor Vrabec
Vilém z Rožmberka
Vladimír Medek
Vladimír Podborský (archeolog)
Vladimír Stehlík
Vladimir Kara-Murza
Vladislav Třeška (lékař)
Vladlen Tatarskij
Vlado Milunić
Vlajka Korjackého autonomního okruhu
Vlasta Pospíšilová
Vlasta Prachatická
Vlasta Winkelhöferová
Vlastislav Antolák
Vlastislav Toman
Voda na Marsu
Vojenská junta
Vojenský převrat v Myanmaru 2021
Vojtěch Javora
Volby do Knesetu 1949
Volkswagen Golf
Vražda Johna Lennona
Vratislav Effenberger
Vratislav Vajnar
Vznik a vývoj sluneční soustavy
Walter Cunningham
Wan-li
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2023
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Nominace nejlepších článků
Wikipedie:Nominace nejlepších článků/Archiv
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2023
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Významnost (lidé)
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/duben
Wikipedie:WikiProjekt Kvalita
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:WikiProjekt Kvalita/Kritéria
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2023
Wikipedie:Zdroje informací
Wikipedie:Zkratka názvu stránky
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Yvonne Přenosilová
Základní posádky Mezinárodní vesmírné stanice
Zápisky historika
Zatčení
Zbraslavský klášter
Zdeňka Bauerová
Zdeněk Češka
Zdeněk Štajnc
Zdeněk Bláha (lední hokejista)
Zdeněk Hrabě
Zdeněk Hrabica
Zdeněk Janík
Zdeněk Jindra
Zdeněk Kepák
Zdeněk Kolářský (sochař)
Zdeněk Mraček
Zdeněk Potužil
Zdeněk Pouzar
Zdeněk Sejček
Zdeněk Svěrák
Zdeněk Velíšek
Zdeněk Vostracký
Zdeněk Ziegler
Zdenka Kašparová
Zdenko F. Daneš
Zoe Klusáková-Svobodová
Zora Dvořáková
Zuzana Burianová




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk