Energy functional - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Energy functional
 ...

In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity.

Historical note

The notion of capacity of a set and of "capacitable" set was introduced by Gustave Choquet in 1950: for a detailed account, see reference (Choquet 1986).

Definitions

Condenser capacity

Let Σ be a closed, smooth, (n − 1)-dimensional hypersurface in n-dimensional Euclidean space , n ≥ 3; K will denote the n-dimensional compact (i.e., closed and bounded) set of which Σ is the boundary. Let S be another (n − 1)-dimensional hypersurface that encloses Σ: in reference to its origins in electromagnetism, the pair (Σ, S) is known as a condenser. The condenser capacity of Σ relative to S, denoted C(Σ, S) or cap(Σ, S), is given by the surface integral

where:

is the normal derivative of u across S; and
  • σn = 2πn⁄2 ⁄ Γ(n ⁄ 2) is the surface area of the unit sphere in .

C(Σ, S) can be equivalently defined by the volume integral

The condenser capacity also has a variational characterization: C(Σ, S) is the infimum of the Dirichlet's energy functional

over all continuously differentiable functions v on D with v(x) = 1 on Σ and v(x) = 0 on S.

Harmonic capacity

Heuristically, the harmonic capacity of K, the region bounded by Σ, can be found by taking the condenser capacity of Σ with respect to infinity. More precisely, let u be the harmonic function in the complement of K satisfying u = 1 on Σ and u(x) → 0 as x → ∞. Thus u is the Newtonian potential of the simple layer Σ. Then the harmonic capacity or Newtonian capacity of K, denoted C(K) or cap(K), is then defined by

If S is a rectifiable hypersurface completely enclosing K, then the harmonic capacity can be equivalently rewritten as the integral over S of the outward normal derivative of u:

The harmonic capacity can also be understood as a limit of the condenser capacity. To wit, let Sr denote the sphere of radius r about the origin in . Since K is bounded, for sufficiently large r, Sr will enclose K and (Σ, Sr) will form a condenser pair. The harmonic capacity is then the limit as r tends to infinity:

The harmonic capacity is a mathematically abstract version of the electrostatic capacity of the conductor K and is always non-negative and finite: 0 ≤ C(K) < +∞.

The Wiener capacity or Robin constant W(K) of K is given by

Logarithmic capacity

In two dimensions, the capacity is defined as above, but dropping the factor of in the definition:

This is often called the logarithmic capacity, the term logarithmic arises, as the potential function goes from being an inverse power to a logarithm in the limit. This is articulated below. It may also be called the conformal capacity, in reference to its relation to the conformal radius.

Properties

The harmonic function u is called the capacity potential, the Newtonian potential when and the logarithmic potential when . It can be obtained via a Green's function as

with x a point exterior to S, and

when and

for .

The measure is called the capacitary measure or equilibrium measure. It is generally taken to be a Borel measure. It is related to the capacity as







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk