Feromagnetismus - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Feromagnetismus
 ...
Feromagnetismus je fyzikální teorie, která popisuje magnetické vlastnosti látek

Feromagnetismus je jev, kterým materiál může vykazovat spontánní magnetizaci a je jednou z nejsilnějších forem magnetismu. Je odpovědný za většinu magnetických reakcí vyskytujících se v každodenním životě a (včetně speciálního případu ferrimagnetismu, níže) je základem pro všechny permanentní magnety (stejně jako pro kovy, které jsou k nim znatelně přitahovány).[1]

Látka vykazující feromagnetické vlastnosti se označuje jako feromagnetikum nebo feromagnetická látka.

Podstata feromagnetismu

Ve feromagnetických látkách (feromagnetikách) vznikají tzv. magnetické domény – tzv. Weissovy domény, což jsou "myšlené" oblasti v nichž jsou magnetické dipóly shodně orientovány. V nepřítomnosti vnějšího magnetického pole je směr magnetických momentů jednotlivých domén různý a výsledný magnetický moment látky je tedy nulový. Ve slabém magnetickém poli dochází k rozšiřování hranic domén, jejichž dipólový moment je orientován ve směru vnějšího magnetického pole, což vede k poměrně značnému zesílení vnějšího magnetického pole. Při vyšší intenzitě vnějšího magnetického pole se magnetické dipólové momenty domén natočí skokem do krystalografického směru, který je nejblíže směru vnějšího magnetického pole. Ve velmi silných vnějších magnetických polích se magnetické momenty domén postupně natáčí do směru vnějšího magnetického pole a další zvyšování vnějšího magnetického pole již vede pouze k zesilování vnějšího pole, které je shodné s vlivem paramagnetických látek. Zesílení magnetického pole ve feromagnetické látce je tedy závislé na intenzitě vnějšího magnetického pole.

Původně se termín feromagnet používal pro jakýkoli materiál, který mohl vykázat spontánní magnetizaci: čistý magnetický moment za absence externího magnetického pole. Tato obecná definice se stále používá. Později byly ale identifikovány různé typy spontánní magnetizace, kde existuje víc než 1 magnetický iont na základní buňku materiálu, což vedlo k striktnější definici „feromagnetismu“, která se často používá na jeho odlišení od ferrimagnetismu. Podrobněji, materiál je „feromagnetický“ v tomto užším smyslu jen když „všechny“ jeho magnetické ionty přidají pozitivní příspěvek k čisté magnetizaci. Jestliže některé magnetické ionty „odebírají“ z čisté magnetizace (jsou-li částečně anti-uspořádány), pak je materiál „ferrimagnetický“. Jsou-li ionty anti-uspořádány kompletně a tedy mají nulovou čistou magnetizaci i přes magnetické uspořádání, pak je to antiferomagnet. Všechny tyto efekty uspořádání se vyskytují jen při teplotách pod určitou kritickou teplotou, nazývanou Curieho teplota (pro feromagnety a ferrimagnety) nebo Néelova teplota (pro antiferomagnety). Je-li Curieho teplota (značena Tc) překročena, rozpadá se ve feromagnetiku soudržnost domén (uspořádané skupiny dílčích momentů) a materiál ztratí feromagnetickou schopnost.[1]

Feromagnetické látky

Mezi feromagnetické látky patří např. železo, ocel, nikl, kobalt, gadolinium, ruthenium[2] nebo některé slitiny.

Ferrimagnetické látky

Ferrimagnetické látky (ferity) jsou sloučeniny oxidu železitého s oxidy jiných kovů (mangan, baryum).[zdroj?

Regulace magnetických vlastností křemíkem

K modifikaci magnetických vlastností feromagnetik se často do materiálu přimíchává křemík. Díky této příměsi dochází ke zvýšení rezistivity, snížení magnetických ztrát, snížení anizotropie a koercitivity a snížení indukce potřebné k nasycení feromagnetika. Příměsí křemíku ale dochází i ke změnám mechanických vlastností materiálu: zvýšení tvrdosti a křehkosti, zhoršení zpracovatelnosti a zlepšení mikrostruktury.

Optimální obsah křemíku pro magnetické vlastnosti materiálu je 6,5 %. Vzhledem k neodvratně souvisejícím změnám mechanických vlastností se např. u železa zůstává u nižších obsahů křemíku: 0,5-3,2 % pro dynamové plechy a 3,2-4,6 % pro transformátorové plechy.

Reference

  1. a b REICHL, Jaroslav; VŠETIČKA, Martin. Encyklopedie fyziky. fyzika.jreichl.com . 2006 . Dostupné online. 
  2. Nový feromagnet. Akademon, 4. červen 2018. Dostupné online

Související články

Externí odkazy

Zdroj:https://cs.wikipedia.org?pojem=Feromagnetismus
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Podporte znalostnú spoločnosť na Slovensku...
čítajte viac na tomto odkaze: Prokaryoty

Ferru
Ferrum
Fier
Fierro
Flerovium
Fluor
Fluorit
Fosfor
Francium
Friedrich Mohs
Gadolinium
Gallium
Gelžės
Geležis
Germanium
Globálně harmonizovaný systém klasifikace a označování chemikálií
Haearn
Hafnium
Halit
Hassium
Helium
Hesin
Hierro
Hierru
Hlavní strana
Hliník
Hořčík
Holmium
Horn
Houarn
Hustota
Iarann
Iezer
Indium
Ion
Ionizační potenciál
Iontový poloměr
Iridium
Iron
Itakandua
Izer
Izotopy železa
Járn
Jarn
Jern
Jod
Křemík
Křemen
Kadmium
Kalcit
Kalifornium
Kelvin
Kibende
Kkalwe (Iron)
Kmeň 121
Kobalt
Koncentrace (chemie)
Konduktivita
Kopernicium
Korund
Kovalentní poloměr
Krypton
Krystal
Krystalografická soustava
Krystalová mřížka
Kurugu
Kyslík
Lanthan
Lawrencium
Lithium
Livermorium
Loha
Lutecium
Měď
Měrná tepelná kapacita
Magnetismus
Mangan
Marad
Mastek
Meitnerium
Mendelevium
Mořská voda
Mohsova stupnice tvrdosti
Molární objem
Molybden
Moscovium
Nápověda:Úvod
Nápověda:Obsah
Neodym
Neon
Neptunium
Nihonium
Nikl
Niob
Nobelium
Oganesson
Olovo
Osmium
Oxidační číslo
Přechodné kovy
Palladium
Pascal (jednotka)
Paulingova stupnice
Perioda (periodická tabulka)
Pevná látka
Platina
Plutonium
Polonium
Pomoc:Referencie
Praseodym
Promethium
Protaktinium
Protonové číslo
R-věty
Radium
Radon
Raud
Rauta
Registrační číslo CAS
Relativní atomová hmotnost
Rezistivita
Rhenium
Rhodium
Rino
Roentgenium
Rtuť
Rubidium
Ruthenium
Rutherfordium
Rychlost zvuku
Sádrovec
Síra
S-věty
Samarium
Seaborgium
Selen
Skandium
Skupenské teplo tání
Skupenské teplo varu
Skupenství
Skupina (periodická tabulka)
Sodík
Soubor:Apatite Canada.jpg
Soubor:Calcite-sample2.jpg
Soubor:Cut Ruby.jpg
Soubor:Fluorite with Iron Pyrite.jpg
Soubor:Gypse Arignac.jpg
Soubor:Iron electrolytic and 1cm3 cube.jpg
Soubor:Iron Spectrum.jpg
Soubor:Mineraly.sk - ortoklas.jpg
Soubor:Quartz Brésil.jpg
Soubor:Rough diamond.jpg
Soubor:Talc block.jpg
Soubor:Topaz cut.jpg
Speciální:Hledání
Speciální:Moje diskuse
Speciální:Moje příspěvky
Speciální:Náhodná stránka
Speciální:Poslední změny
Stälj
Stříbro
Standardní elektrodový potenciál
Stroncium
Stupeň Celsia
Symbol prvku
Sytá pára
Tantal
Technecium
Tellur
Temir
Tennessin
Tepelná vodivost
Teplota tání
Teplota varu
Terbium
Thallium
Thiet
Thorium
Thulium
Tiék
tirse
Titan (prvek)
Topaz
Uhlík
Uran (prvek)
USA
Uzzal
Vápenec
Vápník
Vanad
Vas
Vektor
Vodík
Vy
Wëu
Wasi
Wesi
Wikimedia Commons
Wikipédia:Overiteľnosť
Wikipédia:Spoľahlivé zdroje
Wikipedie:Nejlepší články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wolfram
Wuwate
Xenon
Yero
Yiarn
Yster
Ytterbium
Yttrium
Zemská kůra
Zinek
Zirkonium
Zkouška tvrdosti podle Vickerse
Zlato




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk