Flowering plant - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Flowering plant
 ...

Flowering plant
Temporal range: Early Cretaceous (Valanginian)-Recent
Terrestrial: buttercup
Aquatic: water lily
Wind-pollinated: grass
Insect-pollinated: apple
Tree: oak
Forb: orchid
Diversity of angiosperms
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Spermatophytes
Clade: Angiosperms
Groups (APG IV)[1]

Basal angiosperms

Core angiosperms

Synonyms

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (/ˌæniəˈspərm/),[5][6] commonly called angiosperms. They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον / angeion ('container, vessel') and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species.[7] Angiosperms were formerly called Magnoliophyta (/mæɡˌnliˈɒfətə, -əˈftə/).[8]

Angiosperms are distinguished from the other seed-producing plants, the gymnosperms, by having flowers, xylem consisting of vessel elements instead of tracheids, endosperm within their seeds, and fruits that completely envelop the seeds. The ancestors of flowering plants diverged from the common ancestor of all living gymnosperms before the end of the Carboniferous, over 300 million years ago. In the Cretaceous, angiosperms diversified explosively, becoming the dominant group of plants across the planet.

Agriculture is almost entirely dependent on angiosperms, and a small number of flowering plant families supply nearly all plant-based food and livestock feed. Rice, maize, and wheat provide half of the world's calorie intake, and all three plants are cereals from the Poaceae family (colloquially known as grasses). Other families provide materials such as wood, paper and cotton, and supply numerous ingredients for traditional and modern medicines. Flowering plants are also commonly grown for decorative purposes, with certain flowers playing a significant role in many cultures.

Out of the "Big Five" extinction events in Earth's history, only the Cretaceous–Paleogene extinction event had occurred while angiosperms dominated plant life on the planet. Today, the Holocene extinction affects all kingdoms of complex life on Earth, and conservation measures are necessary to protect plants in their habitats in the wild (in situ), or failing that, ex situ in seed banks or artificial habitats like botanic gardens. Otherwise, around 40% of plant species may become extinct due to human actions such as habitat destruction, introduction of invasive species, unsustainable logging and collection of medicinal or ornamental plants. Further, climate change is starting to impact plants and is likely to cause many species to become extinct by 2100.

Distinguishing features

Angiosperms are terrestrial vascular plants; like the gymnosperms, they have roots, stems, leaves, and seeds. They differ from other seed plants in several ways.

Feature Description Image
Flowers The reproductive organs of flowering plants, not found in any other seed plants.[9]
A Narcissus flower in section. Petals and sepals are replaced here by a fused tube, the corona, and tepals.
Reduced gametophytes, three cells in male, seven cells with eight nuclei in female (except for basal angiosperms)[10] The gametophytes are smaller than those of gymnosperms.[11] The smaller size of the pollen reduces the time between pollination and fertilization, which in gymnosperms is up to a year.[12]
Embryo sac is a reduced female gametophyte.
Endosperm Endosperm forms after fertilization but before the zygote divides. It provides food for the developing embryo, the cotyledons, and sometimes the seedling.[13]
Closed carpel enclosing the ovules. Once the ovules are fertilised, the carpels, often with surrounding tissues, develop into fruits. Gymnosperms have unenclosed seeds.[14]
Peas (seeds, from ovules) inside pod (fruit, from fertilised carpel).
Xylem made of vessel elements Open vessel elements are stacked end to end to form continuous tubes, whereas gymnosperm xylem is made of tapered tracheids connected by small pits.[15]
Xylem vessels (long tubes).

Diversity

Ecological diversity

The largest angiosperms are Eucalyptus gum trees of Australia, and Shorea faguetiana, dipterocarp rainforest trees of Southeast Asia, both of which can reach almost 100 metres (330 ft) in height.[16] The smallest are Wolffia duckweeds which float on freshwater, each plant less than 2 millimetres (0.08 in) across.[17]

Considering their method of obtaining energy, some 99% of flowering plants are photosynthetic autotrophs, deriving their energy from sunlight and using it to create molecules such as sugars. The remainder are parasitic, whether on fungi like the orchids for part or all of their life-cycle,[18] or on other plants, either wholly like the broomrapes, Orobanche, or partially like the witchweeds, Striga.[19]

In terms of their environment, flowering plants are cosmopolitan, occupying a wide range of habitats on land, in fresh water and in the sea. On land, they are the dominant plant group in every habitat except for frigid moss-lichen tundra and coniferous forest.[20] The seagrasses in the Alismatales grow in marine environments, spreading with rhizomes that grow through the mud in sheltered coastal waters.[21]

Some specialised angiosperms are able to flourish in extremely acid or alkaline habitats. The sundews, many of which live in nutrient-poor acid bogs, are carnivorous plants, able to derive nutrients such as nitrate from the bodies of trapped insects.[22] Other flowers such as Gentiana verna, the spring gentian, are adapted to the alkaline conditions found on calcium-rich chalk and limestone, which give rise to often dry topographies such as limestone pavement.[23]

As for their growth habit, the flowering plants range from small, soft herbaceous plants, often living as annuals or biennials that set seed and die after one growing season,[24] to large perennial woody trees that may live for many centuries and grow to many metres in height. Some species grow tall without being self-supporting like trees by climbing on other plants in the manner of vines or lianas.[25]

Taxonomic diversity

The number of species of flowering plants is estimated to be in the range of 250,000 to 400,000.[26][27][28] This compares to around 12,000 species of moss[29] and 11,000 species of pteridophytes.[30] The APG system seeks to determine the number of families, mostly by molecular phylogenetics. In the 2009 APG III there were 415 families.[31] The 2016 APG IV added five new orders (Boraginales, Dilleniales, Icacinales, Metteniusales and Vahliales), along with some new families, for a total of 64 angiosperm orders and 416 families.[1]

The diversity of flowering plants is not evenly distributed. Nearly all species belong to the eudicot (75%), monocot (23%), and magnoliid (2%) clades. The remaining five clades contain a little over 250 species in total; i.e. less than 0.1% of flowering plant diversity, divided among nine families. The 25 most species-rich of 443 families,[32] containing over 166,000 species between them in their APG circumscriptions, are:

The 25 largest angiosperm families
Group Family English name No. of spp.
Eudicot Asteraceae or Compositae daisy 22,750
Monocot Orchidaceae orchid 21,950
Eudicot Fabaceae or Leguminosae pea, legume 19,400
Eudicot Rubiaceae madder 13,150 [33]
Monocot Poaceae or Gramineae grass 10,035
Eudicot Lamiaceae or Labiatae mint 7,175
Eudicot Euphorbiaceae spurge 5,735
Eudicot Melastomataceae melastome 5,005
Eudicot Myrtaceae myrtle 4,625
Eudicot Apocynaceae dogbane 4,555
Monocot Cyperaceae sedge 4,350
Eudicot Malvaceae mallow 4,225
Monocot Araceae arum 4,025
Eudicot Ericaceae heath 3,995
Eudicot Gesneriaceae gesneriad 3,870
Eudicot Apiaceae or Umbelliferae parsley 3,780
Eudicot Brassicaceae or Cruciferae cabbage 3,710
Magnoliid dicot Piperaceae pepper 3,600
Monocot Bromeliaceae bromeliad 3,540
Eudicot Acanthaceae acanthus 3,500
Eudicot Rosaceae rose 2,830
Eudicot Boraginaceae borage 2,740
Eudicot Urticaceae nettle 2,625
Eudicot Ranunculaceae buttercup 2,525
Magnoliid dicot Lauraceae laurel 2,500

Evolution

History of classification

From 1736, an illustration of Linnaean classification

The botanical term "angiosperm", from Greek words angeíon (ἀγγεῖον 'bottle, vessel') and spérma (σπέρμα 'seed'), was coined in the form "Angiospermae" by Paul Hermann in 1690, including only flowering plants whose seeds were enclosed in capsules.[34] The term angiosperm fundamentally changed in meaning in 1827 with Robert Brown, when angiosperm came to mean a seed plant with enclosed ovules.[35][36] In 1851, with Wilhelm Hofmeister's work on embryo-sacs, Angiosperm came to have its modern meaning of all the flowering plants including Dicotyledons and Monocotyledons.[36][37] The APG system[31] treats the flowering plants as an unranked clade without a formal Latin name (angiosperms). A formal classification was published alongside the 2009 revision in which the flowering plants rank as the subclass Magnoliidae.[38] From 1998, the Angiosperm Phylogeny Group (APG) has reclassified the angiosperms, with updates in the APG II system in 2003,[39] the APG III system in 2009,[31][40] and the APG IV system in 2016.[1]

Phylogeny

External

In 2019, a molecular phylogeny of plants placed the flowering plants in their evolutionary context:[41]

Embryophytes
Zdroj:https://en.wikipedia.org?pojem=Flowering_plant
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk