Hadamard transform - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Hadamard transform
 ...

The product of a Boolean function and a Hadamard matrix is its Walsh spectrum:[1]
(1, 0, 1, 0, 0, 1, 1, 0) × H(8) = (4, 2, 0, −2, 0, 2, 0, 2)
Fast Walsh–Hadamard transform, a faster way to calculate the Walsh spectrum of (1, 0, 1, 0, 0, 1, 1, 0).
The original function can be expressed by means of its Walsh spectrum as an arithmetical polynomial.

The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on 2m real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real).

The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size 2 × 2 × ⋯ × 2 × 2.[2] It decomposes an arbitrary input vector into a superposition of Walsh functions.

The transform is named for the French mathematician Jacques Hadamard (French: [adamaʁ]), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh.

Definition

The Hadamard transform Hm is a 2m × 2m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2m real numbers xn into 2m real numbers Xk. The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

Recursively, we define the 1 × 1 Hadamard transform H0 by the identity H0 = 1, and then define Hm for m > 0 by: where the 1/2 is a normalization that is sometimes omitted.

For m > 1, we can also define Hm by: where represents the Kronecker product. Thus, other than this normalization factor, the Hadamard matrices are made up entirely of 1 and −1.

Equivalently, we can define the Hadamard matrix by its (kn)-th entry by writing

where the kj and nj are the bit elements (0 or 1) of k and n, respectively. Note that for the element in the top left corner, we define: . In this case, we have:

This is exactly the multidimensional DFT, normalized to be unitary, if the inputs and outputs are regarded as multidimensional arrays indexed by the nj and kj, respectively.

Some examples of the Hadamard matrices follow.








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk