A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Kmitanie alebo oscilácia je pohyb fyzikálnej sústavy (napr. hmotného bodu), pri ktorom sa systém po vychýlení vždy vráti do rovnovážnej polohy. Jedna zmena v rámci kmitania sa nazýva aj kmit (časť kmitavého pohybu, pri ktorom hmotný bod prejde všetkými polohami a vráti sa späť odkiaľ vyšiel), prechod z jednej krajnej polohy do opačnej sa niekedy nazýva kyv. Perióda je čas, za ktorý sústava vykoná jeden kmit, frekvencia je počet kmitov za jednu sekundu. Pre kmitavý pohyb je typické, že sa striedavo mení kinetická energia systému na potenciálnu a naopak.
Typickými príkladmi kmitania je kyvadlo, pri ktorom sa periodicky mení výchylka od zvislice, alebo teleso zavesené na pružine, pri ktorom sa po vychýlení periodicky mení jeho výšková súradnica.
Základné pojmy
Pri kmitaní a iných periodických dejoch sa periodicky mení nejaká veličina, označme ju , kde v zátvorke znamená, že veličina je funkciou času. Vo väčšine prípadov existuje istá rovnovážna hodnota veličiny okolo ktorej skutočná hodnota osciluje. Rozdiel oproti rovnovážnej polohe nazývame výchylkou a budeme ju označovať ako .
Čas, za ktorý sústava vykoná jeden kmit (osciláciu), sa nazýva perióda, zvyčajne označovaná ako T. Je to najmenší časový interval, pre ktorý v každom okamihu platí
Prevrátenou hodnotou periódy je frekvencia, zvyčajne označovaná . Jej jednotkou je Hertz, pričom . Frekvencia oscilátora udáva počet kmitov, ktoré nastanú za jednu sekundu. Poznatok možno vyjadriť vzťahom
Pri harmonickom kmitavom pohybe je niekedy užitočné pracovať s uhlovou frekvenciou . Jej význam možno lepšie pochopiť pomocou analógie s pohybom po kružnici (uvedená nižšie). Jednotkou uhlovej frekvencie je radián za sekundu. S bežnou frekvenciou je viazaná vzťahom
Amplitúda je maximálna výchylka z rovnovážnej polohy .
Harmonický kmitavý pohyb
Harmonický kmitavý pohyb je typický tým, že priebeh oscilujúcej veličiny je opísaný sínusoidou. Možno to vyjadriť priamou úmerou
Väčšina kmitavých pohybov je harmonická v prvom priblížení pre malé výchylky. Napríklad pohyb kyvadla je tým presnejšie opísaný rovnicami pre harmonický kmitavý pohyb, čím je menšia maximálna výchylka závažia od zvislice. Väčšinou sa udáva, že dostatočnú presnosť dosiahneme pre výchylky menšie ako 5°.
Aby pohyb telesa, resp. časový vývoj systému bol harmonický kmitavý, stačí aby bola splnená pohybová rovnica
kde je časom sa meniaca výchylka z rovnovážnej polohy a je kladná konštanta úmernosti. Riešenie tejto diferenciálnej rovnice je
kde je amplitúda kmitov a fázový posun, obe konštanty v rovnici možno určiť z počiatočných podmienok. Ďalší parameter v rovnici je už spomínaná uhlová frekvencia , ktorá je s konštantou úmernosti previazaná jednoduchým vzťahom
Z toho je zrejmé, že pre frekvenciu a periódu oscilácii platia rovnice
Analógia k pohybu po kružnici

Nech sa hmotný bod pohybuje po kružnici ako na obrázku vpravo konštantnou uhlovou rýchlosťou , pričom
Pre stredový uhol teda platí , kde je uhol prejdený v čase a teda je určený počiatočnými podmienkami. Ak je polomer kružnice , tak potom pre okamžité súradnice hmotného bodu platia rovnice
Ak sa bližšie pozrieme na rovnicu pre ypsilonovú súradnicu hmotného bodu, všimneme si, že je rovnaká ako rovnica opisujúca harmonický kmitavý pohyb, ktorého amplitúda je rovná polomeru kružnice, uhlová frekvencia je rovná uhlovej rýchlosti hmotného bodu a fázové posuny sú rovnaké. Tento harmonický kmitavý pohyb je možné aj pozorovať jednoduchým experimentom. Ak systém na obrázku zľava osvetlíme rovnobežnými svetelnými lúčmi, na tienidle postavenom vpravo od systému bude konať tieň hmotného bodu naozaj harmonický kmitavý pohyb.
Energia oscilujúceho systému
Pre oscilujúci systém je typické, že sa striedavo premieňa potenciálna energia na kinetickú a naopak. Ak je pravidelne sa meniaca výchylka a ak časovú deriváciu zjednodušene označíme bodkou nad derivovanou veličinou, tak platí
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Antropológia
Aplikované vedy
Bibliometria
Dejiny vedy
Encyklopédie
Filozofia vedy
Forenzné vedy
Humanitné vedy
Knižničná veda
Kryogenika
Kryptológia
Kulturológia
Literárna veda
Medzidisciplinárne oblasti
Metódy kvantitatívnej analýzy
Metavedy
Metodika
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk