A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Lineárnou kombináciou prvkov (vektorov) vektorového priestoru rozumieme nový prvok (vektor), ktorý tomuto priestoru taktiež náleží. Vektorový priestor je generovaný jeho bázovými vektormi. Každý prvok tohto priestoru sa teda dá vyjadriť ako lineárna kombinácia jeho bázových vektorov.
Definícia
Nech je vektorový priestor nad poľom . Nech a . Potom lineárnou kombináciou rozumieme vektor
Vektormi nemusíme nutne chápať n-tice čísel, ale aj funkcie a iné matematické objekty. Napríklad lineárnou kombináciou na priestore polynómov je nový polynóm
Príklad
Sú dané lineárne nezávislé polynómy . Lineárnu kombináciu dosiahneme voľbou
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Antropológia
Aplikované vedy
Bibliometria
Dejiny vedy
Encyklopédie
Filozofia vedy
Forenzné vedy
Humanitné vedy
Knižničná veda
Kryogenika
Kryptológia
Kulturológia
Literárna veda
Medzidisciplinárne oblasti
Metódy kvantitatívnej analýzy
Metavedy
Metodika
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk