A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- Nezamieňať s heslom Nikotínamidadeníndinukleotid.
Nikotínamidadeníndinukleotidfosfát | |
![]() | |
Všeobecné vlastnosti | |
Sumárny vzorec | C21H29N7O17P3 |
Synonymá | NADP+ |
Fyzikálne vlastnosti | |
Molárna hmotnosť | 744,416 g/mol |
Ďalšie informácie | |
Číslo CAS | 53-59-8 |
Pokiaľ je to možné a bežné, používame jednotky sústavy SI. Ak nie je hore uvedené inak, údaje sú za normálnych podmienok. | |
Nikotínamidadeníndinukleotidfosfát alebo NADP+ je kofaktor, ktorý sa vyskytuje v anabolických reakciách, ako napríklad Calvinovom cykle alebo syntéze lipidov či nukleových kyselín, ktoré využívajú NADPH ako redukčné činidlo. Využívajú ho všetky formy bunkového života.[1]
NADPH je redukovaná forma NADP+. NADP+ sa líši od NAD+ tým, že NADP+ má naviac fosfátovú skupinu na 2' pozícii ribózy. Táto fosfátová skupina je pridávaná NAD+ kinázou a odstraňovaná NADP+ fosfatázou.[2]
-
Štruktúra NADP+
-
Štruktúra NADPH
Vlastnosti

NADP+ je schopný prijať dva elektróny a protón, čím sa mení na redukovanú formu, NADPH. NADP+ vystupuje v reakciách ako oxidačné činidlo, NADPH potom ako redukčné činidlo.
Fluorescencia
Podobne ako NADH, i NADPH vykazuje fluorescenciu. NADPH sa vo vodných roztokoch excituje pri nikotínamidovom absorpčnom maxime (asi 335 nm, pri UV) a má fluorescenčné emisné maximum, ktoré má píky pri 445-460 nm (fialová až modrý). NADP+ nevykazuje žiadnu výraznú fluorescenciu.[3]
Stabilita
NADH a NADPH sú veľmi stabilné v zásaditých roztokoch, ale NAD+ a NADP+ sa v zásaditých roztokoch rozkladajú na fluorescentný produkt, ktorá je možné využíť na kvantifikáciu. Naopak sú NAD+ a NADP+ celkom stabilné v kyslých roztokoch, ale kyslé roztoky rozkladajú NADH a NADPH.[4]
Biosyntéza
NADP+
Všeobecne sa najprv syntetizuje NADP+, ktorý sa potom premieňa na NADPH. Reakcie syntézy zvyčajne začínajú z NAD+, ktorý sa syntetizuje de novo alebo recyklačnými reakciami, na ktorý potom NAD+ kináza pridáva fosfátovú skupinu. ADP-ribozylcykláza umožňuje syntézu z nikotínamidu v obnovovacej dráhe a NADP+ fosfatáza premieňa NADPH naspäť na NADH, aby sa udržala rovnováha.[1] Niektoré formy NAD+ kinázy, hlavne tá prítomná v mitochondriách, premieňa aj NADH naspäť na NADPH (katalyzuje teda reakciu oboma smermi).[5][6] Prokaryotická dráha je menej objasnená, ale obsahuje všetky podobné enzýmy, takže tento proces by mal prebiehať podobne.[1]
NADPH
NADPH vzniká z NADP+. Hlavným zdrojom NADPH u zvierat a iných nefotosyntetických organizmov je pentózafosfátová dráha, kde ho produkuje glukóza-6-fosfátdehydrogenáza (G6PDH) v prvom kroku tejto dráhy. Pentózafosfátová dráha z glukózy tvorí aj pentózy, ktoré sú takisto dôležitou súčasťou NAD(P)H. Niektoré baktérie využívajú G6PDH v Entner–Doudoroffovej dráhe, ale tvorba NADPH je rovnaká.[1]
Ferredoxín-NADP+ reduktáza (FNR), ktorá je prítomná vo všetkých doménach života, je hlavných zdrojom NADPH u fotosyntetických organizmov, vrátane rastlín a siníc. Nachádza sa v poslednom kroku elektrón transportného reťazca v svetelnej fáze fotosyntézy. Využíva sa ako redukčná sila pre biosyntetické dráhy v Calvinovom cykle na asimiláciu oxidu uhličitého a pomáha premeniť ho na glukózu. FNR prijíma elektróny aj v iných nefotosyntetických dráhach: je vyžadovaná pre redukciu dusičnanu na amoniak u rastlinnej asimilácie v dusíkovom cykle a v tvorbe olejov.[1]
Existuje i ďalšie menej známe mechanizmy, ktorými sa tvorí NADPH, ktoré u eukaryotov všetky závisia na prítomnosti mitochondrií. Hlavnými enzýmami v týchto procesoch, ktoré súvisia s metabolizmom uhlíka, sú izoformy malátdehydrogenázy, izocitrátdehydrogenázy (IDH) a glutamátdehydrogenázy spojené s NADP+. V týchto reakciách sa ako oxidačné činidlo využíva NADP+, podobne ako NAD+ v obdobných enzýmoch.[7] Mechanizmus IDH vyzerá byť hlavným zdrojom NADPH v tukových bunkách a možno i bunkách pečene.[8] Tieto procesy sa nachádzajú aj v baktériách. Baktérie sú takisto schopné využiť i NADP-dependentnú glyceraldehydr-3-fosfátdehydrogenázu za tým istým účelom. Podobne ako pentózafosfátová dráha, tieto dráhy sú príbuzné častiam glykolýzy.[1] Ďalšou dráhou, ktorá súvis s metabolizmom uhlíka, ktorá sa účastní tvorby NADPH, je mitochondriálny cyklus folátu, ktorý využíva serín ako zdroj jednouhlíkových jednotiek na udržanie syntézy nukleotidov a redoxnej homeostázy v mitochondriách. Mitochondriálny cyklus folátu bol nedávno navrhnutý ako hlavný zdroj tvorby NADPH v mitochondriách rakovinných buniek.[9]
NADPH môže vznikať aj dráhami, ktoré nie sú spojené s metabolizmom uhlíka. Jedným príkladom je ferredoxínreduktáza. Nikotínamidnukleotidtranshydrogenáza presúva vodík medzi NAD(P)H a NAD(P)+ a nachádza sa v eukaryotických mitochondriách a mnohých baktériách. Existujú i verzie, ktorých funkcia je závislá na protónovom gradiente. Niektoré anaeróbne organizmy využívajú hydrogenáza spojené s NADP+ a štiepia hydrid z plynného vodíka, čím tvoria protón a NADPH.[1]
Funkcia
NADPH poskytuje redukčné ekvivalenty, zvyčajne vodíkové atómy, pre biosyntetické reakcie a redoxné procesy, ktoré sa účastnia ochrany proti toxicite reaktívnych foriem kyslíka (ROS), čím umožňuje regeneráciu glutatiónu (GSH).[10] NADPH sa takisto účastní anabolických dráh, ako je syntéza cholesterolu, syntéza steroidov,[11] syntéza kyseliny askorbovej,[11] syntéza xylitolu,[11] syntéza cytozolových mastných kyselín[11] a mikrozomálneho predlžovania mastných kyselín.
Systém NADPH je takisto zodpovedný za tvorbu voľných radikálov pomocou NADPH oxidázy v bunkách imunitného systému. Tieto radikály sa používajú na ničenie patogénov v procese nazývanom respiračné vzplanutie.[12] Je to zdroj redukčných ekvivalentov pre hydroxyláciu aromatických zlúčenín, steroidov, alkoholov a drog katalyzovanú cytochrómom P450.
Enzýmy, ktoré využívajú NADP(H)
NADP+ sa ako kofaktor účastní minimálne 140 chemických reakcií katalyzovaných enzýmami.[1]
NADPH ako koenzým
Medzi enzýmy, ktoré využívajú NADPH ako kofaktor, patrí napríklad:
- Adrenodoxínreduktáza: Tento enzým je všadeprítomný vo väčšine organizmov.[13] Presúva dva elektróny a dva protóny z NADPH na FAD. U stavovcov je to prvý enzým v mitochondriálnych systémoch P450, ktoré syntetizujú steroidné hormóny.[14]
NADPH ako substrát
V rokoch 2018 a 2019 sa objavili prvé články, ktoré popisovali enzýmy, ktoré odstraňujú 2' fosfátovú skupinu NADP(H) u eukaryotov. Ako prvý bol popísaný cytoplazmatický proteín MESH1 (Uniprot Q8N4P3)[15] a potom mitochondriálny proteín nokturnín.[16][17] Čo je zaujímavé, štruktúra a viazanie NADPH u proteínov MESH1 (5VXA) a nokturnínu (6NF0) si nie sú pribuzné.
Referencie
- ↑ a b c d e f g h NADPH-generating systems in bacteria and archaea. Frontiers in Microbiology, 2015, s. 742. DOI: 10.3389/fmicb.2015.00742. PMID 26284036.
- ↑ Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Bioscience, Biotechnology, and Biochemistry, April 2008, s. 919–30. DOI: 10.1271/bbb.70738. PMID 18391451.
- ↑ Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nature Communications (Springer Science and Business Media LLC), 2014-05-29, s. 3936. ISSN 2041-1723. DOI: 10.1038/ncomms4936. PMID 24874098.
- ↑ PASSONNEAU, Janet. Enzymatic analysis : a practical guide. : Humana Press, 1993. ISBN 978-0-89603-238-5. S. 3,10.
- ↑ Characterization of NADH kinase from Saccharomyces cerevisiae. Journal of Biochemistry, April 1989, s. 588–93. DOI: 10.1093/oxfordjournals.jbchem.a122709. PMID 2547755.
- ↑ Localization of the NADH kinase in the inner membrane of yeast mitochondria. Journal of Biochemistry, June 1989, s. 916–21. DOI: 10.1093/oxfordjournals.jbchem.a122779. PMID 2549021.
- ↑ Routes and regulation of NADPH production in steroidogenic mitochondria. Endocrine Research, Feb–May 1995, s. 231–41. DOI: 10.3109/07435809509030439. PMID 7588385.
- ↑ PALMER, Michael. 10.4.3 Supply of NADPH for fatty acid synthesis . . Dostupné online. Archivované 2013-06-06 z originálu.
- ↑ Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells. Front Oncol, June 2017, s. 117. DOI: 10.3389/fonc.2017.00117. PMID 28649560.
- ↑ Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicology and Applied Pharmacology, May 1985, s. 473–83. DOI: 10.1016/0041-008X(85)90255-8. PMID 4049396.
- ↑ a b c d RODWELL, Victor. Harper's illustrated Biochemistry, 30th edition. USA : McGraw Hill, 2015. ISBN 978-0-07-182537-5. S. 123-124, 166, 200-201.
- ↑ The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immunity & Ageing, October 2008, s. 13. DOI: 10.1186/1742-4933-5-13. PMID 18950479.
- ↑ Conservation of the Enzyme-Coenzyme Interfaces in FAD and NADP Binding Adrenodoxin Reductase-A Ubiquitous Enzyme. Journal of Molecular Evolution, December 2017, s. 205–218. DOI: 10.1007/s00239-017-9821-9. PMID 29177972.
- ↑ Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. The Journal of Steroid Biochemistry and Molecular Biology, December 1992, s. 779–804. Dostupné online. DOI: 10.1016/0960-0760(92)90307-5. PMID 22217824.
- ↑ Mammalian stringent-like response mediated by the cytosolic NADPH phosphatase MESH1. bioRxiv, 2018. DOI: 10.1101/325266.
- ↑ The Metabolites NADP+ and NADPH are the Targets of the Circadian Protein Nocturnin (Curled). bioRxiv, 2019, s. 2367. DOI: 10.1101/534560. PMID 31147539.
- ↑ + and NADPH are the targets of the circadian protein Nocturnin (Curled). Nature Communications, May 2019, s. 2367. DOI: 10.1038/s41467-019-10125-z. PMID 31147539.
Zdroj
Tento článok je čiastočný alebo úplný preklad článku Nicotinamide adenine dinucleotide phosphate na anglickej Wikipédii.
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Antropológia
Aplikované vedy
Bibliometria
Dejiny vedy
Encyklopédie
Filozofia vedy
Forenzné vedy
Humanitné vedy
Knižničná veda
Kryogenika
Kryptológia
Kulturológia
Literárna veda
Medzidisciplinárne oblasti
Metódy kvantitatívnej analýzy
Metavedy
Metodika
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk