Peptidová vakcína - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Peptidová vakcína
 ...
Vakcína proti pravým neštovicím s vybavením pro očkování

Vakcína (též očkovací látka nebo imunizační agens) je látka, jejíž vpravení do organismu má zajistit stimulaci imunitního systému, aby si organismus vytvořil mechanismus obrany proti konkrétnímu onemocnění bez toho, aby skutečně onemocněl. Obrana organismu je zajišťována protilátkami a také na buněčné úrovni. U Světové zdravotnické organizace jsou registrováno vakcíny proti 29 různým lidským onemocněním.[1]

Proces, při kterém se podává vakcína, se nazývá vakcinace, neboli očkování.

Pojmenování

Název „vakcína“ pochází z latinské variola vaccina, „kravská variola“ (z lat. vacca, „kráva“), tedy virus kravských neštovic, který na konci 18. století použil Edward Jenner jako první vakcínu proti pravým neštovicím. O necelé století později zakladatel imunologie Louis Pasteur na jeho počest navrhl zobecnit tento název na všechny vakcíny.

Název „očkování“ pochází původně ze zahradnického termínu pro očkování rostlin, což je druh štěpování, při kterém se jako štěp použije pupen, který se vsadí do jiné rostliny. Podobně při očkování se vsazuje zárodek nemoci k vytvoření imunity. Termín „očkování“ je kalkem z latinského inoculatio, vzniklé spojením předložky in- a oculus, oko, pupen.

Historie

Louis Pasteur

První očkování prováděli čínští lékaři proti pravým neštovicím. Používali však k němu prášek z rozdrcených strupů pravých neštovic, což bylo dost riskantní a mohlo vést k plnému propuknutí nemoci. Tato metoda se časem rozšířila po světě, v Anglii ji poprvé zavedla v roce 1721 Lady Mary Wortley Montagu, která ji převzala od Turků. Celou metodu radikálně vylepšil anglický lékař Edward Jenner, který v roce 1796 poprvé použil k výrobě prášku strupy z kravských neštovic, které u člověka způsobují jen relativně lehké onemocnění.

Ve druhé polovině 19. století francouzský vědec Louis Pasteur, zakladatel imunologie a mikrobiologie, definoval základy teorie imunizace, vypracoval obecné postupy pro přípravu vakcín a několik jich sám vyvinul. Roku 1870 provedl první úspěšné očkování proti anthraxu a zároveň uskutečnil pokus, který dokázal účinnost imunizační metody. Roku 1885 provedl první úspěšné očkování člověka proti vzteklině.

Základní pojmy

  • Imunoprofylaxe – postupy cíleného zvyšování specifické imunity vůči infekčnímu agens. Existují dva základní typy imunoprofylaxe:[2]

Předpokladem úspěšné aktivní imunizace (očkování) je nejen kvalitní vakcína a její správná aplikace, ale stav imunitního systému jedince: imunitně vyzrálý jedinec s genetickými předpoklady pro odpověď na daný antigen, nesuprimovaný stresovými vlivy, infekčními chorobami a bez interference pasivně přijatých protilátek. Vakcinace musí být prováděna sterilním způsobem, aby nešířila jiné agens.[3]

Historicky vakcíny obsahovaly stopové množství rtuti ve sloučenině zvané thiomersal. Její přítomnost zabraňovala jednak množení bakterií, ale hlavně likvidovala případné aktivní zbytky virů (účinně likvidovala hepatitidu typu B, meningitidu, tetanus, viry dětské obrny a mnoho dalších). Jelikož některé studie ukazovaly na možnou toxicitu této látky, bylo na začátku 90. let její použití zakázáno v USA, zemích Evropské unie a v dalších zemích.[4]

Kombinované vakcíny

Vakcíny jsou často kombinovány, protože to zjednodušuje jejich podání a přidruženou administrativu.[5][6] Příkladem jsou:[7]

Kontroverze

Podrobnější informace naleznete v článku Očkování#Kontroverze.

Používání vakcín od počátku způsobuje kontroverze, pochybnosti některých lidí o účinnosti vakcín a obavy z jejich známých i neznámých nežádoucích účinků, spojené obvykle s nedůvěrou v lékařskou vědu a v příslušné vědecké i státní instituce. Může být spojeno s šířením různých neověřených informací, názorů falešných autorit a dezinformací.[8] Vedle nedůvěry k očkování se objevují i konspirační teorie, které za plošným očkováním hledají spiknutí výrobců vakcín za účelem zvýšení zisku nebo vakcínám přisuzují utajované účinky, které mají sloužit například k ovládání nebo likvidaci lidí.[9] Již v roce 2019, tedy před pandemií covidu-19, identifikovala Světová zdravotnická organizace (WHO) nedůvěru v očkování jako jedno z největších hrozeb zdraví světové populace.[10]

Více než 50 % vakcín je nevyužito kvůli špatnému transportu či skladování.[11]

Požadavky na vakcíny

Dobře konstruovaná vakcína musí splňovat dva základní atributy: musí být účinná a neškodná. Primárním předpokladem je výběr vhodného antigenu, který navodí účinnou – protektivní imunitu (tj. zcela ochrání organismus před vznikem nemoci). U bakterií a virů, jejichž populace nejsou antigenně jednotné, je třeba vybrat vhodný druh, sérovar nebo antigenní variantu, která se vyskytuje v regionu, v němž se očkovaný jedinec nachází. Vybraný antigen musí být také dobře imunogenní, tj. navodit dostatečnou imunitní odpověď.

Světová zdravotnická organizace (WHO) i Úřad pro kontrolu potravin a léčiv (FDA) ve Spojených státech (USA) při schvalování vyžaduje, aby vakcína měla alespoň 50% účinnost.[12][13]

Posílení účinku vakcíny

Pro posílení účinku vakcíny jsou k antigenům při výrobě ještě přidávány tzv. adjuvans (= chemická látka, která zesiluje imunitní odpověď) nebo imunostimulační látky. Taková vakcína je pak označována jako adjuvovaná. V současné době jsou známy adjuvans, které vedou k převaze Th1 odpovědi a tím k navození buněčné imunity a jiné, které stimulují především Th2 odpověď s tvorbou protilátek.

Typy vakcín

U živých vakcín se upustilo od používání plně virulentních kmenů, ale využívá se buď oslabených (atenuovaných) kmenů viru či baktérie nebo v některých případech heterologoních virů, které nevyvolávají u daného živočišného druhu onemocnění, ale díky antigenní podobnosti jsou schopny navodit protektivní imunitu.

Inaktivované (mrtvé) vakcíny vznikají umrtvením mikroorganismu, takže zcela ztrácí schopnost vyvolat infekční onemocnění. Buď se použije celá baktérie (celobuněčné) nebo jen její část - toxin zbavený toxického účinku (toxoid).

Moderní věda však přinesla velký pokrok ve výrobě vakcín. Zejména díky metodám molekulární biologie a dalších biotechnologiím vznikly zcela unikátní, účinné a bezpečné vakcíny. Při tvorbě rekombinantních vakcín se vezme konkrétní gen z viru, baktérie či parazita, který kóduje vznik specifického antigenu. Tento gen se inkorporuje do jiného organismu (např. baktérie Escherichia coli), jež poté produkuje specifický antigen. Jinou metodou je například vakcína s deletovaným genem, u které se používá virus, z jehož genomu byl odstraněn jeden nebo více genů, tj. výsledný mikroorganismus neprodukuje kompletní sadu proteinů. Tento mutantní virus již není patogenní.

Přehled hlavních typů vakcín (podrobněji viz další kapitoly):

  • vakcíny vyrobené tradiční technologií:
    • živá vakcína
      • virulentní (dnes se již nepoužívá)
      • heterologní
      • atenuovaná
    • inaktivovaná vakcína
      • celobuněčná
      • toxoidová
    • subjednotková
      • s purifikovaným antigenem
      • se syntetickým antigenem
      • ribozomální
  • rekombinantní vakcína
    • subjednotková
      • s deletovaným genem
  • genové vakcíny
    • rekombinantní vektorová
    • vektorová
    • mRNA
  • antiidiotypové vakcíny
  • experimentální
    • peptidová

Atenuovaná vakcína

Vakcinace touto formou vakcíny spočívá v podání původce onemocnění, který je sice živý, ale je oslabený z hlediska schopnosti vyvolat infekci. V zásadě je možné použít organismus, který má výrazně oslabenou schopnost přežívat a množit se například v důsledku cíleného poškození. Vedle skutečného oslabení schopnosti mikroorganismu množit se a přežívat může být oslabení dosaženo i tím, že se kmen používaný k vakcinaci tak dlouho pěstuje ve tkáňových kulturách, až ztratí schopnost vyvolat onemocnění. Tento typ boje s mikroorganismy ovšem nemusí být jen pozitivní.[14]

Velkou výhodou atenuovaných vakcín je to, že takové očkování vyvolává z podstaty prakticky stejnou imunitní odpověď jako infekce neoslabeným kmenem. Účinnost takového očkování ve smyslu malého podílu částečného nebo úplného selhání očkování je tedy velmi vysoká. Na druhou stranu při podání živého kmene může teoreticky vést k tomu, že proběhne celé onemocnění. Prakticky toto hrozí u imunokompromitovaných pacientů, tedy u nemocných s vrozenou poruchou imunitního systému, u nemocných léčených imunosupresivními léky např. po transplantaci nebo pro autoimunitní onemocnění, nebo u HIV pozitivních, zejména v pokročilejším stádiu onemocnění. Riziko zvratu oslabeného kmene zpět v patogenní je obvykle jen teoretické, v praxi však bylo toto pozorováno u perorální vakcíny proti poliomyelitidě (dnes již nepoužívaná Sabinova vakcína). Technickou nevýhodou atenuovaných vakcín je především to, že vakcinační látky bývají poměrně choulostivé na podmínky při transportu a skladování.

V současné době se používají oslabené vakcíny pro následující onemocnění:

virová:

  • spalničky
  • příušnice
  • zarděnky
  • kravské neštovice (zoonoza) - příprava vakcíny proti pravým neštovicím
  • žlutá zimnice
  • rotavirové infekce
  • chřipka (intranasální aplikace) - štěpený virus, využívají se antigeny H a N
  • poliomyelitida (perorální vakcína – Sabinova vakcína)
  • covid-19

bakteriální:

  • tuberkulóza (BCG)
  • břišní tyfus (perorální vakcína)

Inaktivovaná vakcína

Inaktivované vakcíny obsahují mrtvé viry nebo bakterie, někdy se proto hovoří o celobuněčných vakcínách. Organismy se pěstují ve vhodných kulturách v laboratoři, pak jsou usmrceny, obvykle teplem nebo chemikáliemi. Při usmrcení organismu dochází ke změnám konformace proteinů; aby byla zachována účinnost vakcíny, musí být co nejméně změněna antigenní struktura. Proto se poměrně často používá formaldehyd, který je z hlediska zachování antigenní struktury proteinů dostatečně šetrný.

Hlavní výhodou inaktivovaných vakcín je to, že nemohou vyvolat infekci ani u imunokompromitovaných pacientů. Na druhou stranu je odpověď na inaktivované vakcíny méně vydatná než na atenuovanou vakcínu. Zatímco u atenuované vakcíny obvykle stačí jedna dávka k vyvolání dobré odpovědi, u inaktivované vakcíny je obvykle nutné druhé nebo i třetí dávky a případně i tzv. „boost“ dávky s poměrně dlouhým odstupem.

V současné době se používají inaktivované vakcíny pro následující onemocnění:

virová:

  • poliomyelitida
  • hepatitida A
  • vzteklina
  • chřipka

bakteriální:

  • černý kašel
  • břišní tyfus
  • mor

Toxoidová vakcína

V současné době se používají toxoidové vakcíny pro následující bakteriální onemocnění:

  • záškrt
  • tetanus

Subjednotková vakcína

Subjednotková vakcína je inaktivovaná vakcína, ve které jsou pouze fragmenty mikroorganismu. Usmrcený patogen je fragmentován, fragmenty jsou separovány a ve vakcíně jsou jen ty fragmenty, které jsou významné z hlediska imunitní odpovědi na příslušný mikroorganismus.

V současné době se používají subjednotkové vakcíny pro následující onemocnění:

  • hepatitida B
  • chřipka
  • černý kašel (acelulární vakcína)
  • lidský papilomavirus (HPV)
  • antrax
  • Lymská borelióza

Zvláštním typem podjednotkových vakcín jsou vakcíny polysacharidové. Velkou nevýhodou je to, že imunitní systém dětí mladších 2 let není obvykle schopen tyto vakcíny zpracovat žádoucím způsobem, vakcinace obvykle nevede k imunizaci.

V současné době se používají polysacharidové vakcíny pro následující onemocnění:

  • pneumokokové infekce
  • meningokokové infekce
  • břišní tyfus
  • infekce Haemophilus influenzae typu b

Konjugovaná vakcína

Konjugovaná vakcína je řešením problému s tím, že imunitní systém dětí do dvou let nemusí adekvátním způsobem zpracovat sacharidové antigeny. Řešením problému se ukázala chemická vazba sacharidu na proteinový nosič.

V současné době se používají konjugované vakcíny pro následující bakteriální onemocnění:

  • meningokokové infekce
  • infekce bakterií Haemophilus influenzae typu b
  • pneumokokové infekce

Rekombinantní vakcína

Rekombinantní vakcíny se vyznačují především tím, že v technologii výroby se neobjevuje fáze pomnožování patogenu. Fragmenty, které by byly v případě podjednotkové vakcíny separovány z usmrcených patogenů, jsou zde produkovány metodami genetického inženýrství. Jakmile je známa struktura fragmentu, který je třeba získat, je identifikován gen pro jeho produkci. Tento gen je vnesen do genomu organismu použitelného v bioreaktoru, obvykle kvasinky, ale může se jednat i o bakterie nebo tkáňové kultury savčích buněk. V bioreaktorech jsou pak produkovány fragmenty použitelné k vakcinaci.

V současné době se používají rekombinantní vakcíny pro následující onemocnění:

  • hepatitida B
  • lidský papilomavirus

Genetické inženýrství nabízí ještě jednu možnost při produkci vakcín. Při znalosti genomu patogenního organismu lze totiž cílenou manipulací vyřadit geny odpovědné za virulenci. Výsledkem bude vlastně oslabený kmen, který je plně životaschopný, jen není schopen ani teoreticky vyvolat základní onemocnění. Takto je k dispozici oslabený kmen Salmonela typhi, který není schopen vyvolat břišní tyfus.

V případě modifikovaného viru chřipky je strategie jiná, protože vir se musí pomnožit v buňkách hostitele. Vir je tedy modifikován tak, aby se byl schopen pomnožit pouze ve sliznici nosohltanu, není však schopen napadnout plíce.

Genová vakcína

Genová vakcína obsahuje nukleovou kyselinu (DNA nebo RNA vakcína), která nese informaci pro tvorbu určité bílkoviny (antigenu). K tvorbě této bílkoviny dochází až v buňkách očkovaného jedince. Využije se přitom proteosyntetický aparát, který je součástí každé buňky. Bílkovina, kterou buňky vytvoří podle receptu obsaženého v genové vakcíně, má za úkol vyvolat imunitní odpověď organismu. Jedná se většinou o bílkoviny, které jsou součástí virů, bakterií nebo nádorových buněk (protinádorové vakcíny).

U genových vakcín je nutné zajistit, aby se DNA nebo RNA dostala dovnitř buněk. K tomuto účelu se používá několik různých technik. Například k transportu DNA do buněk se využívá virových vektorů, takové vakcíny se někdy označují jako vektorové vakcíny. K prvnímu rozsáhlému použití genových vakcín proti infekčnímu onemocnění došlo při pandemii covidu-19. [15][16][17]

Peptidová vakcína

„Peptidovou vakcínou“ je jakýkoli peptid, který slouží k imunizaci organismu proti patogenu. Peptidové vakcíny jsou často syntetické vakcíny[18] a napodobují přirozeně se vyskytující proteiny z patogenů.[19] Kromě infekčních patogenů lze peptidové vakcíny použít jako terapeutické vakcíny proti rakovině, kde se k vyvolání účinné protinádorové odpovědi T-buněk používají peptidy z antigenů asociovaných s nádory. Syntetické dlouhé peptidy vykázaly slibné úspěšné výsledky.[20]

Odkazy

Reference

  1. Global Vaccine Action Plan. www.who.int . . Dostupné online. (anglicky) 
  2. BENEŠOVÁ, Eva. Vakcíny . VŠCHT, 2017-12-03 . Dostupné online. 
  3. MARX, Preston A.; ALCABES, Phillip G.; DRUCKER, Ernest. Serial human passage of simian immunodeficiency virus by unsterile injections and the emergence of epidemic human immunodeficiency virus in Africa. S. 911–920. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences . 2001-06-29 . Roč. 356, čís. 1410, s. 911–920. Dostupné online. DOI 10.1098/rstb.2001.0867. (anglicky) 
  4. BIGHAM, Mark; COPES, Ray. Thiomersal in Vaccines: Balancing the Risk of Adverse Effects with the Risk of Vaccine-Preventable Disease. S. 89–101. Drug Safety online. 2005 cit. 2021-01-07. Roč. 28, čís. 2, s. 89–101. Dostupné online. DOI 10.2165/00002018-200528020-00001. PMID 15691220. (anglicky) 
  5. Nemoci, očkovací látky.... Očkování dětí online. Česká pediatrická společnost, 2006-09-14 cit. 2020-01-04. Dostupné online. 
  6. Vesikari T, Sadzot-Delvaux C, Rentier B, Gershon A. Increasing coverage and efficiency of measles, mumps, and rubella vaccine and introducing universal varicella vaccination in Europe: a role for the combined vaccine. Pediatr Infect Dis J. 2007, s. 632–8. DOI 10.1097/INF.0b013e3180616c8f. PMID 17596807. S2CID 41981427. 
  7. SVOBODOVÁ, Michaela. Odmítači, posouvači a rozkladači. Proč rodiče odmítají očkování. iDNES.cz online. MAFRA, 2015-09-24 cit. 2020-01-04. Dostupné online. 
  8. https://denikreferendum.cz/clanek/32926-lzi-o-vakcinach-opakuji-se-stare-famy-pachaji-vsak-nevidany-chaos
  9. https://www.investigace.cz/labyrint-antivakcinacnich-konspiraci-edice-covid-19/
  10. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
  11. https://medicalxpress.com/news/2021-02-shelf-stable-vaccines-access.html - Shelf-stable vaccines avoid waste, expand access
  12. ZADRAŽILOVÁ, Jitka. Nechceme vakcínu druhé kategorie, bouří se ve vídeňských nemocnicích. Novinky.cz online. Borgis, 2021-02-09 cit. 2021-02-09. Dostupné online. 
  13. HAVRDOVÁ, Monika. Uspěchání vývoje vakcíny na koronavirus by se nemuselo vyplatit, varují britští vědci Zdroj: https://www.lidovky.cz/svet/uspechani-vyvoje-vakciny-na-koronavirus-by-se-nemuselo-vyplatit-varuji-britsti-vedci.A200902_133102_ln_zahranici_ele. Lidovky.cz online. MAFRA, 2020-09-03 cit. 2021-02-09. Dostupné online. 
  14. http://phys.org/news/2016-12-combat-disease-worse.html - Using 'fire to fight fire' to combat disease could make it worse, tests show
  15. The different types of COVID-19 vaccines, WHO.1
  16. DNA vaccines, WHO. 2
  17. BÁRCENAS, Oriol. Are gene-based vaccines the future of immunisation?. Young European Biotech Network online. 2020-08-09 cit. 2021-01-28. Dostupné online. (anglicky) 
  18. PATARROYO, Manuel Elkin. Studies in owl monkeys leading to the development of a synthetic vaccine against the asexual blood stages of Plasmodium falciparum.. American Journal of Tropical Medicine and Hygiene. 1990, s. 339–354. Dostupné online. DOI 10.4269/ajtmh.1990.43.339. PMID 2240362. 
  19. Synthetic peptide vaccines online. World Health Organization cit. 2015-07-24. Dostupné online. 
  20. MELIEF, Cornelis J.M.; VAN DER BURG, Sjoerd H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nature Reviews Cancer. May 2008, s. 351–360. ISSN 1474-175X. DOI 10.1038/nrc2373. PMID 18418403. (En) 

Literaturaeditovat | editovat zdroj

  • TOMAN, Miroslav a kol. Veterinární imunologie. 2., dopl. a aktualiz. vyd. Praha: Grada, 2009. 392 s. ISBN 978-80-247-2464-5.

Audiovizuální dokumentyeditovat | editovat zdroj

Související článkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Peptidová_vakcína
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.



'Ndrangheta
Úřad pro kontrolu potravin a léčiv
Úmrtí
Úmrtí v roce 2021
Úmrtnost
Únava
Ústřední vojenská nemocnice
Ústav molekulární genetiky Akademie věd České republiky
Čína
Číselník
Čaj
Červený obr
Česká Wikipedie
Česko
Čich
Člověk
Čokoláda
ČT24
Šablona:Cite journal
Šablona:Cite web
Šestinedělí
Španělská chřipka
Švýcarsko
Ženeva
10. listopad
11. listopad
12. listopad
15. listopad
17. listopad
1796
1821
1871
1893
1898
1921
1941
1956
1971
31. říjen
6. listopad
9. listopad
Aerosol
Afroameričané
AIDS
Aktuálně.cz
Alphonse Bertillon
Alternativní a komplementární medicína
Amnézie
Andrej Babiš
Aneurysma
Angiotenzin konvertující enzym
Angličtina
Anosmie
Antibiotikum
Antiseptikum
Argentinské tango
Arteriovenózní malformace
Astma
AstraZeneca
Ateroskleróza
Aterosklerotický plát
Autoimunita
Autoprotilátka
Autoritní kontrola
Avenida Corrientes
Bílý trpaslík
B-lymfocyt
Bamlanivimab
Bitva u Arcole
Bohemia Energy
Cévní mozková příhoda
Cévní zásobení mozku
Centers for Disease Control and Prevention
Chřipka
Chicago
Chirurgická maska
Chlor
Chlorochin
Chrám
Chronická obstrukční plicní nemoc
Chronické renální selhání
Chuť
CNN
Commons:Featured pictures/cs
Coronavirus disease 2019?oldid=1001404814
Covid-19
Cukr
Cukrová třtina
Cystická fibróza
Cytokinová bouře
Dýchací soustava
Dassault Mirage III
Deprese
Dexamethason
Diabetes mellitus
Diabetes mellitus 2. typu
Diagnóza
Diagnostický a statistický manuál duševních poruch
Digital object identifier
Dlouhý covid
Dodavatel poslední instance
Donald Trump
Droga (léčivo)
DSM
Duševní porucha
Dyspnoe
Ebola
Economia
Elektrokardiogram
Eli Lilly and Company
Embolie
Encyklopedie
Endokrinologie
Epitop
Ethanol
Evropa
Fakultní nemocnice u sv. Anny v Brně
Farmakologie
Favipiravir
Fibrilace síní
Fonograf
Francouzská národní knihovna
Francouzské revoluční války
Frederik Willem de Klerk
Gama Sagittae
Gemeinsame Normdatei
Genetická daktyloskopie
Glasgow
GlaxoSmithKline
Gravitace
Habsburská monarchie
Heath Freeman
HIV
Hlavní strana
Hmotná nouze
Hnědý trpaslík
Hoffmann-La Roche
Horečka
Hrubá míra smrtelnosti
Hvězdná velikost
Hydrokortison
Hypertenze
ICF
ICHI
Ictus (spolek)
IDNES.cz
Ilegální obchod s drogami
Illinois
Imunitní systém
Imunoglobulin G
Imunoglobulin M
Imunologie
Inaktivovaná vakcína
Incidence
Indiáni
Indie
Infarkt myokardu
Infekční onemocnění
Inkubační doba
Inosin pranobex
Institut Karolinska
Interferon
Interleukin-6
International Standard Book Number
International Standard Serial Number
In vitro
Ischemická choroba srdeční
Ischemie
Itálie
Ivermektin
Izrael
James Burney
Jana Altmannová
Jaroslav Šaroch
Jednotka intenzivní péče
Jižní Korea
Johannes Kepler
Johns Hopkins University
John Oxford
Jupiter (planeta)
Káva
Kýchání
Křeček
Kůže
Kašel
Kabinová lanová dráha na Ještěd
Kalábrie
Kanada
Kapénková infekce
Karanténa
Kardiovaskulární onemocnění
Karlovy Vary
Kateřina II. Veliká
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Parazitologie
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kategorie:Zemřelí na cévní mozkovou příhodu
Kauza Čapí hnízdo
Kazuistika
Klaudios Ptolemaios
Klinická studie
Kloub
Koření
Kolchicin
Konference OSN o změně klimatu 2021 v Glasgow
Koronavirus
Kostra
Krevní sérum
Léčitelství
Léčivá látka
Léčivý přípravek
Léčivo
Lék
Lékárna
Lékař
Lékařská fakulta Masarykovy univerzity
Léková forma
Lamezia Terme
Latina
Latinka
Library of Congress Control Number
Lockdown
Londýn
Mág
Míra smrtelnosti na infekci
MAFRA
Magnetická rezonance
Marek Vokáč
Massachusettský technologický institut
Med
Medián
Memorial
Metaanalýza
Methylprednisolon
Mexická prasečí chřipka
Mexiko
Mezinárodní astronomická unie
Mezinárodní den studentstva
Mezinárodní klasifikace nemocí
Mezinárodní vesmírná stanice
Michael Adams
Mieczyslaw Tomaszewski
Migréna
Mikrometr
Miloš Zeman
Ministerstvo práce a sociálních věcí České republiky
Miroslav Žbirka
Miroslav Protiva
Miroslav Středa
Mlha
Močové cesty
Monoklonální protilátka
Mozek
Mutace
Myokarditida
Mysterium Cosmographicum
Mytí rukou
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní a univerzitní knihovna v Záhřebu
Národní knihovna České republiky
Národní knihovna Izraele
Národní parlamentní knihovna Japonska
Národní střelecká asociace
Národní vědecká nadace
Nadace Wikimedia
Napoleon Bonaparte
NASA
Neandertálec
Nemoc
Nemocnice Ichilov
Neurologie
Nosohltan
Nova
Očkování
Očkování#Kolektivní imunita
Oběhová soustava
Obelisk (Buenos Aires)
Oftalmologie
Omrzliny
Onkologie
Opar (počasí)
Opičí selfie
Oregon
Orgán
Oseltamivir
Otorhinolaryngologie
Otrava
Ozon
Paříž
Pacient
Paliativní péče
Paměťová buňka
Paměťové T lymfocyty
Pandemie covidu-19
Pandemie covidu-19 v Česku
Parosmie
Pavel I. Ruský
Pavol Molnár
PCR test
Peptidová vakcína
Peroxid vodíku
Petr Fiala
Planeta
Platónské těleso
Plicní embolie
Plicní fibróza
Ploutvonožci
Porod
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Medicína
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Portál (nakladatelství)
Poruchy chování
Poslanecká sněmovna Parlamentu České republiky
Prášek (léková forma)
Praní špinavých peněz
Prevalence
Prezident České republiky
Prophets of Rage
Prosinec 2019
Provincie Bergamo
Psoriáza
Psychiatrie
Public Enemy
PubMed
Q12034587#identifiers
Q12034587#identifiers|Editovat na Wikidatech
Q12202#identifiers
Q12202#identifiers|Editovat na Wikidatech
Q50018#identifiers
Q50018#identifiers|Editovat na Wikidatech
Q84263196
Rána
Rakousko
Raloxifen
Regeneron (firma)
Remdesivir
Reprodukční číslo
Reverzní transkriptáza
Revmatoidní artritida
RNA
RNA vakcína
Robert Browning
Ron Flowers
Rozmnožovací soustava
Rozvojová země
Rusko
Sanofi
Sarilumab
SARS
SARS-CoV-2
Septický šok
Serotonin
Skořice
Skotsko
Slunce
Smrt
Smrtnost
Sotrovimab
Soubor:ANTI-covid.jpg
Soubor:Blausen 0836 Stroke.png
Soubor:Catheter Schema 1 pose de l'aiguille.svg
Soubor:CDC 2019-nCoV Laboratory Test Kit.jpg
Soubor:COVID-19 Outbreak World Map per Capita.svg
Soubor:COVID-19 Pneumonie - 82m Roe Thorax ap - 001.jpg
Soubor:COVID-19 vaccine map.svg
Soubor:Graph of Covid-19 Infection Fatality Ratio by age.png
Soubor:Ischemic Stroke.svg
Soubor:Karlovy Vary hospital during the COVID-19 pandemic 07.png
Soubor:Log Graph of Covid-19 Infection Fatality Ratio by age.png
Soubor:Macaca nigra self-portrait large.jpg
Soubor:Profile portrait of Catherine II by Fedor Rokotov (1763, Tretyakov gallery).jpg
Soubor:Sagitta constellation map.png
Soubor:SARS-CoV-2 without background.png
Soubor:Tango Porteño.jpg
Soubor:Wiki letter w.svg
Souhvězdí
Souhvězdí Šípu
SpaceX
SpaceX Crew-3
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciální:Zdroje knih/978-80-262-0348-3
Spekulace
Spojené království
Spojené státy americké
Společenský odstup
Společnost národů
SPOLU
Sputnik V
Státní zastupitelství
Subarachnoidální krvácení
Superskupina (hudba)
Světová zdravotnická organizace
Sval
Syndrom akutní dechové tísně
Těhotenství
T-lymfocyt
Tableta
Tepna
Testování covidu-19
Thajsko
The Washington Post
Tocilizumab
Trávicí soustava
Transpozon
Trombóza
Trombolýza
Tuberkulóza
Tumor
Tymián
Umifenovir
Univerzita Johnse Hopkinse
Urtikárie
Válka první koalice
Výpočetní tomografie
Vakcína
Vakcína Johnson & Johnson proti covidu-19
Vakcína Moderna proti covidu-19
Vakcína Oxford–AstraZeneca proti covidu-19
Vakcína Pfizer–BioNTech proti covidu-19
Vakcína proti covidu-19
Virtual International Authority File
Virus
Virus Epsteina–Barrové
Vláda Petra Fialy
Vlhkost vzduchu
Vodní bilance
Vražda
Vydírání
Vzdušný přenos
Web 2.0
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Autorské právo#Publikování cizích autorských děl
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Přesměrování
Wikipedie:Pahýl
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Pokyny pro využití článků o zdravotnictví
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Slučování a přesun stránek#Slučování
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/listopad
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:WikiProjekt Překlad/Rady
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Wilbur Smith
Wu-chan
Zákon
Zápal plic
Závislost na lécích
Zdraví
Zdravotní pojišťovna
Zdravotní pojištění
Zdravotnictví
Zotavovací poloha
Zvíře




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk