Scheme (mathematics) - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Scheme (mathematics)
 ...

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise Éléments de géométrie algébrique (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).[1] Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem.

Schemes elaborate the fundamental idea that an algebraic variety is best analyzed through the coordinate ring of regular algebraic functions defined on it (or on its subsets), and each subvariety corresponds to the ideal of functions which vanish on the subvariety. Intuitively, a scheme is a topological space consisting of closed points which correspond to geometric points, together with non-closed points which are generic points of irreducible subvarieties. The space is covered by an atlas of open sets, each endowed with a coordinate ring of regular functions, with specified coordinate changes between the functions over intersecting open sets. Such a structure is called a ringed space or a sheaf of rings.

Formally, a scheme is a ringed space covered by affine schemes. An affine scheme is the spectrum of a commutative ring; its points are the prime ideals of the ring, and its closed points are maximal ideals. The coordinate ring of an affine scheme is the ring itself, and the coordinate rings of open subsets are rings of fractions.

The relative point of view is that much of algebraic geometry should be developed for a morphism XY of schemes (called a scheme X over the base Y), rather than for an individual scheme. For example, in studying algebraic surfaces, it can be useful to consider families of algebraic surfaces over any scheme Y. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a moduli space.

For some of the detailed definitions in the theory of schemes, see the glossary of scheme theory.

Development

The origins of algebraic geometry mostly lie in the study of polynomial equations over the real numbers. By the 19th century, it became clear (notably in the work of Jean-Victor Poncelet and Bernhard Riemann) that algebraic geometry over the real numbers is simplified by working over the field of complex numbers, which has the advantage of being algebraically closed.[2] The early 20th century saw analogies between algebraic geometry and number theory, suggesting the question: can algebraic geometry be developed over other fields, such as those with positive characteristic, and more generally over number rings like the integers, where the tools of topology and complex analysis used to study complex varieties do not seem to apply.

Hilbert's Nullstellensatz suggests an approach to algebraic geometry over any algebraically closed field k: the maximal ideals in the polynomial ring k are in one-to-one correspondence with the set kn of n-tuples of elements of k, and the prime ideals correspond to the irreducible algebraic sets in kn, known as affine varieties. Motivated by these ideas, Emmy Noether and Wolfgang Krull developed commutative algebra in the 1920s and 1930s.[3] Their, work generalizes algebraic geometry in a purely algebraic direction, generalizing the study of points (maximal ideals in a polynomial ring) to the study of prime ideals in any commutative ring. For example, Krull defined the dimension of a commutative ring in terms of prime ideals and, at least when the ring is Noetherian, he proved that this definition satisfies many of the intuitive properties of geometric dimension.

Noether and Krull's commutative algebra can be viewed as an algebraic approach to affine algebraic varieties. However, many arguments in algebraic geometry work better for projective varieties, essentially because they are compact. From the 1920s to the 1940s, B. L. van der Waerden, André Weil and Oscar Zariski applied commutative algebra as a new foundation for algebraic geometry in the richer setting of projective (or quasi-projective) varieties.[4] In particular, the Zariski topology is a useful topology on a variety over any algebraically closed field, replacing to some extent the classical topology on a complex variety (based on the metric topology of the complex numbers).

For applications to number theory, van der Waerden and Weil formulated algebraic geometry over any field, not necessarily algebraically closed. Weil was the first to define an abstract variety (not embedded in projective space), by gluing affine varieties along open subsets, on the model of abstract manifolds in topology. He needed this generality for his construction of the Jacobian variety of a curve over any field. (Later, Jacobians were shown to be projective varieties by Weil, Chow and Matsusaka.)

The algebraic geometers of the Italian school had often used the somewhat foggy concept of the generic point of an algebraic variety. What is true for the generic point is true for "most" points of the variety. In Weil's Foundations of Algebraic Geometry (1946), generic points are constructed by taking points in a very large algebraically closed field, called a universal domain.[4] This worked awkwardly: there were many different generic points for the same variety. (In the later theory of schemes, each algebraic variety has a single generic point.)

In the 1950s, Claude Chevalley, Masayoshi Nagata and Jean-Pierre Serre, motivated in part by the Weil conjectures relating number theory and algebraic geometry, further extended the objects of algebraic geometry, for example by generalizing the base rings allowed. The word scheme was first used in the 1956 Chevalley Seminar, in which Chevalley pursued Zariski's ideas.[5] According to Pierre Cartier, it was André Martineau who suggested to Serre the possibility of using the spectrum of an arbitrary commutative ring as a foundation for algebraic geometry.[6]

Origin of schemes

The theory took its definitive form in Grothendieck's Éléments de géométrie algébrique (EGA) and the later Séminaire de géométrie algébrique (SGA), bringing to a conclusion a generation of experimental suggestions and partial developments.[7] Grothendieck defined the spectrum X of a commutative ring R as the space of prime ideals of R with a natural topology (known as the Zariski topology), but augmented it with a sheaf of rings: to every open subset U he assigned a commutative ring OX(U), which may be thought of as the coordinate ring of regular functions on U. These objects Spec(R) are the affine schemes; a general scheme is then obtained by "gluing together" affine schemes.

Much of algebraic geometry focuses on projective or quasi-projective varieties over a field k, most often over the complex numbers. Grothendieck developed a large body of theory for arbitrary schemes extending much of the geometric intuition for varieties. For example, it is common to construct a moduli space first as a scheme, and only later study whether it is a more concrete object such as a projective variety. Applying Grothendieck's theory to schemes over the integers and other number fields led to powerful new perspectives in number theory.

Definition

An affine scheme is a locally ringed space isomorphic to the spectrum Spec(R) of a commutative ring R. A scheme is a locally ringed space X admitting a covering by open sets Ui, such that each Ui (as a locally ringed space) is an affine scheme.[8] In particular, X comes with a sheaf OX, which assigns to every open subset U a commutative ring OX(U) called the ring of regular functions on U. One can think of a scheme as being covered by "coordinate charts" that are affine schemes. The definition means exactly that schemes are obtained by gluing together affine schemes using the Zariski topology.

In the early days, this was called a prescheme, and a scheme was defined to be a separated prescheme. The term prescheme has fallen out of use, but can still be found in older books, such as Grothendieck's "Éléments de géométrie algébrique" and Mumford's "Red Book".[9] The sheaf properties of OX(U) mean that its elements, which are not necessarily functions, can neverthess be patched together from their restrictions in the same way as functions.

A basic example of an affine scheme is affine n-space over a field k, for a natural number n. By definition, An
k
is the spectrum of the polynomial ring k. In the spirit of scheme theory, affine n-space can in fact be defined over any commutative ring R, meaning Spec(R).

The category of schemes

Schemes form a category, with morphisms defined as morphisms of locally ringed spaces. (See also: morphism of schemes.) For a scheme Y, a scheme X over Y (or a Y-scheme) means a morphism XY of schemes. A scheme X over a commutative ring R means a morphism X → Spec(R).

An algebraic variety over a field k can be defined as a scheme over k with certain properties. There are different conventions about exactly which schemes should be called varieties. One standard choice is that a variety over k means an integral separated scheme of finite type over k.[10]

A morphism f: XY of schemes determines a pullback homomorphism on the rings of regular functions, f*: O(Y) → O(X). In the case of affine schemes, this construction gives a one-to-one correspondence between morphisms Spec(A) → Spec(B) of schemes and ring homomorphisms BA.[11] In this sense, scheme theory completely subsumes the theory of commutative rings.

Since Z is an initial object in the category of commutative rings, the category of schemes has Spec(Z) as a terminal object.

For a scheme X over a commutative ring R, an R-point of X means a section of the morphism X → Spec(R). One writes X(R) for the set of R-points of X. In examples, this definition reconstructs the old notion of the set of solutions of the defining equations of X with values in R. When R is a field k, X(k) is also called the set of k-rational points of X.

More generally, for a scheme X over a commutative ring R and any commutative R-algebra S, an S-point of X means a morphism Spec(S) → X over R. One writes X(S) for the set of S-points of X. (This generalizes the old observation that given some equations over a field k, one can consider the set of solutions of the equations in any field extension E of k.) For a scheme X over R, the assignment SX(S) is a functor from commutative R-algebras to sets. It is an important observation that a scheme X over R is determined by this functor of points.[12]

The fiber product of schemes always exists. That is, for any schemes X and Z with morphisms to a scheme Y, the fiber product X×YZ (in the sense of category theory) exists in the category of schemes. If X and Z are schemes over a field k, their fiber product over Spec(k) may be called the product X × Z in the category of k-schemes. For example, the product of affine spaces Am and An over k is affine space Am+n over k.

Since the category of schemes has fiber products and also a terminal object Spec(Z), it has all finite limits.

Examples

Here and below, all the rings considered are commutative.

Affine space

Let be an algebraically closed field. The affine space is the algebraic variety of all points with coordinates in ; its coordinate ring is the polynomial ring . The corresponding scheme is a topological space whose closed points are the maximal ideals , the set of polynomials vanishing at . The scheme also contains a non-closed point for each non-maximal prime ideal , whose vanishing defines an irreducible subvariety ; the topological closure of the scheme point is the subscheme , including all the closed points of the subvariety, i.e. with , or equivalently .

The scheme has a basis of open subsets given by the complements of hypersurfaces,

for irreducible polynomials . This set is endowed with its coordinate ring of rational functions

.

This induces a unique sheaf which gives the usual ring of rational functions regular on a given open set .

Each ring element , a polynomial function on , also defines a function on the points of the scheme whose value at lies in the quotient ring








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk