Sopečná erupce - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Sopečná erupce
 ...
Sopečná erupce surtseyského typu během formování ostrova Surtsey nedaleko Islandu v roce 1963.

Sopečná erupce je geologická vulkanická událost, během které dochází k výronu magmatu na povrch tělesa. Je vyvolávána tlakem sopečných plynů uvolňujících se z magmatu během výstupu. Erupce nastane, pokud celkový tlak uvolněných sopečných plynů dosáhne meze, kdy je jimi generované tlakové napětí schopné prorazit nadložní vrstvy. Během erupce je pak magma vyvrhováno pod tlakem na povrch, přičemž se do atmosféry uvolní sopečné plyny.[1]

Během sopečné erupce může být vyvrhováno různé množství materiálu v závislosti na podmínkách v magmatickém krbu a jeho velikosti. Viskozita magmatu a prostředí, kde k erupci dochází, následně ovlivňuje typ sopečné erupce a její průběh. Při silných explozivních erupcí může být do vyšších vrstev atmosféry vyvrženo velké množství sopečného materiálu, jenž je schopno ovlivnit globální klimatické podmínky.[2]

Rozdělení sopečných erupcí

Podle charakteru

Explozivní erupce.
Výlevná erupce.
  • Výbušná (explozivní) – je bouřlivá erupce, která do okolí prudce vyvrhuje sopečný materiál. Její výbušnost je způsobena velkým množství rozpuštěných plynů a viskózním (špatně tekutým) magmatem, zejména felsického či intermediálního složení (ryolit, dacit, andezit). Rozpuštěné plyny vlivem této vlastnosti nemohou volně uniknout a v tavenině je tak mimořádný tlak. Značný rozdíl vůči mnohem menšímu atmosférickému tlaku, během výstupu na povrch, má za následek výbušné uvolnění těchto plynů. Při uvolnění energie je do okolí vyvrhován sopečný materiál v podobě kusů lávy a pyroklastik. Za tyto erupce jsou zodpovědné hlavně vulkány na konvergentním rozhraní (subdukční zóny) tektonických desek. V minulosti způsobily mohutné explozivní erupce řadu tragických katastrof.

Podle mechanismu

Freatomagmatická erupce maaru.
Freatická erupce (v popředí).
  • magmatické – jsou erupce bez účasti vody, které pohání především expanze plynné složky v magmatu, v důsledku klesajícího okolního litostatického tlaku. Nízko viskózní magmata s malým množstvím rozpuštěných plynů produkují relativně klidné efuzivní erupce (např. havajské a islandské). Vysoce viskózní magmata s vysokým obsahem rozpuštěného plynu naopak produkují prudké explozivní erupce (vulkánské, peléjské, pliniovské atd.).[3]
  • hydrovulkanické – hydrovulkanické erupce jsou erupce, kdy se magma dostává do přímého nebo nepřímého kontaktu s vodou. Dělí se na dva typy:
    • Freatomagmatické – vznikají přímým kontaktem magmatu s vodou. Velký teplotní rozdíl mezi těmito dvěma látkami vede k přemění vody v páru, jejíž expanze (pára má 1 700× větší objem než voda)[4] rapidně zvyšuje tlak a tím explozivitu a sílu erupce. To má za následek vyšší míru fragmentace magmatu. Tím vznikají oblaka popela, jehož zrna mají menší frakci než u magmatických erupcí. Ke freatomagmatickým erupcím patří i několik typů erupcí: surtseyské, podmořské a subglaciální.[5]
    • Freatické – jsou výbuchy horké páry. Oproti magmatickým a freatomagmatickým mají mnohem nižší intenzitu. Nastávají tehdy, když teplo z nedaleko umístěného magmatu zahřeje podzemní nebo povrchovou vodu. Vzniklá expandující pára rapidně zvýší tlak, což vede k explozivní erupci. Ta kromě páry může také vyvrhovat sopečný popel a vystřelovat sopečné bomby. Ty ovšem tvoří nejuvenilní materiál, který nemá původ v magmatu, jenž erupci vyvolalo, nýbrž se jedná o kusy nadložní vrstvy či dna sopečného kráteru. Freatické erupce se vyznačují svou nepředvídatelností, což bylo například příčinou tragédie na novozélandském ostrově Whakaari roku 2019, kde zemřelo 21 turistů. Další neštěstí se odehrálo 27. září 2014 v Japonsku. Aniž by stratovulkán Ontake poskytl předčasné varování v podobě otřesů, došlo k jeho náhlé freatické erupci. Bylo zabito 63 turistů, kteří v tu dobu horu zdolávali.[6][7]

Podle umístění

  • centrální – jsou erupce, při nichž je magma přiváděno k povrchu hlavním sopouchem.
  • lineární – magma proniká na povrch prostřednictvím trhlin podél zlomů. Tento typ erupcí se předpokládá jak u kontinentální, tak u oceánské kůry. Soustředí se převážně na horké skvrny a divergentní rozhraní tektonických desek.
  • arenální – je sopečná činnost, jež není soustředěna delší dobu na jednom místě, ale postupně mění polohu. Vulkanismus sopek, které jsou součástí takové činnosti, je převážně krátkodobý. Někdy jsou vulkány tohoto typu rozmístěny v jedné linii, ale mohou se nacházet i v nepravidelných skupinách, které mají společný původ.[8][9]

Typy erupcí

Havajská

Havajská erupce: 1. oblak plynů, 2. lávová fontána, 3. kráter, 4. lávové jezero, 5. fumaroly, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. sill, 10. přívod magmatu, 11. magmatický krb, 12. dajka

Havajský typ erupce je nejklidnější [10] a nejběžnějším typem sopečné erupce. Jedná se o efuzivní (výlevný) vulkanismus málo viskózních (dobře tekoucích) láv, většinou čedičové složení, s nízkým obsahem rozpuštěných plynů a vysokou teplotou překračující 1000 °C. Byl pojmenován podle sopek na ostrově Havaj. Tyto erupce nejsou explozivní, nedochází při nich k emitování oblak sopečného popela a jsou typické pro štítové vulkány. Sopečná aktivita nemusí být soustředěna pouze na centrální sopečný kráter, roztavená hornina může naopak proudit z radiálně umístěných trhlin na svazích.[11] Občas se mohou objevit i lávové fontány. Ačkoliv havajský typ patří mezi nejméně nebezpečné erupce, vzniklé lávové proudy jsou schopné urazit velké vzdálenosti, ohrozit zastavené oblasti a někdy si i vyžádat ztráty na lidských životech.[12][13]

Islandská

Islandský typ je výlev málo viskózní lávy z trhliny. Nápadně se podobá tomu havajskému, ale pocházejí z trhlin rovnoběžně orientované okolo divergentního rozhraní tektonických desek. Délka pukliny, z níž proudí roztavená hornina na povrch, může být dlouhá od několika set metrů po několik desítek kilometrů. Není neobvyklé, že se podél ní mohou zformovat tzv. spečené kužely. Lávové proudy nebo lávové příkrovy vyplňují níže položená místa a vytváří tak lávova pole. K obnovení sopečné činnosti nedochází na tomtéž místě, ale nová trhlina se otevře několik set metrů až kilometrů vedle. Islandské erupce většinou kumulativně nebudují žádný horský masiv. Pokud ano, jedná se o štítový vulkán podstatně menších rozměrů než protějšky vystavěné pomocí havajského typu. Nejznámější erupcí byla patrně ta, která nastala u sopky Laki v letech 17831784. Po dobu osmi měsíců prýštila láva z trhliny dlouhé 27 km. Na zemský povrch se ji vylilo zhruba 14,7 km³.[14][15]

Strombolská

Strombolská erupce: 1. oblak popela, 2. struska, 3. sopečný spad, 4. lávová fontána , 5. sopečná bomba, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. dajka, 10. přívod magmatu, 11. magmatický krb, 12. sill
Podrobnější informace naleznete v článku Strombolská erupce.

Strombolský typ jsou slabé explozivní erupce a představují jeden z nejlépe zdokumentovaných typů. Jsou charakteristické krátkodobými, rytmicky se opakujícími výbuchy expandujících plynů, chrlící do svého nejbližšího okolí sopečnou strusku.[10] Interval mezi samotnými pulzy může být v řádu vteřin nebo minut. Každý takový výbuch, doprovázený hlasitým zvukem, je způsobený prasknutím kapsy sopečných plynů, která k povrchu stoupá sopouchem a zároveň s sebou vytlačuje magma. Síla expandujících plynů magma fragmentuje na menší kusy, které jsou výtrysky chrleny maximálně do výšky několik set metrů. Během svého letu částečně utuhnou a jako sopečná struska se hromadí v okolí sopečného kráteru.[11] Jednotlivý výbuch může na zemský povrch dopravit 1–10 tun materiálu.[15] Kromě strusky jsou schopné taktéž produkovat malá oblaka sopečného popela (nepřekračující výšku 1 km) a vystřelovat sopečné bomby. Pro strombolské erupce jsou běžná málo viskózní magmata čedičového a čedičoandezitového složení. Typicky se vyskytují u sypaných kuželů a stratovulkánů na konvergentním rozhraní tektonických desek (subdukční zóny). Eruptivní epizoda může bez přestávky trvat hodiny nebo i dny. Může ji rovněž doprovázet lávová fontána. Konec epizody bývá někdy zakončován produkcí lávových proudů. Typ erupce byl pojmenován podle známého italského vulkánu Stromboli, který je nepřetržitě činný již 2 400 let a proto ho starověcí Římané přezdívali „maják Středozemního moře“. Strombolské erupce jsou turisticky vyhledávané, zejména pro noční pozorování.[15][16]

Vulkánská

Vulkánská erupce: 1. oblak popela, 2. struska, 3. lávová fontána, 4. sopečný spad, 5. lávová bomba, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. sill, 10. přívod magmatu, 11. magmatický krb, 12. dajka

Vulkánské erupce jsou středně prudké explozivní erupce, produkující oblaka popela a zároveň do okolí vystřelují velké kusy hornin (tzv. lávové bomby). Souvisejí s přítomností velice viskózního magmatu, zejména čedičo-andezitového, andezitového, dacitového a ryolitového složení.[11] To obsahuje velké množství plynů, které vlivem viskozity nemohou z magmatu volně unikat. V jícnu sopky tak postupně narůstá tlak, až nakonec dojde k jeho náhlému uvolnění prostřednictvím prudkých explozí, které mohou být velmi hlasité.(Video ) Síla takového výbuchu je přímo úměrná množství nahromaděných plynů. Jednotlivé výbuchy vulkánských erupcí se rytmicky opakují, byť nepravidelně, přičemž délka intervalu se pohybuje od méně než jedné minuty až po jeden den. Oblaka sopečného popela obvykle dosahují výšek 1 až 2 km. Jenom výjimečně vyvržený materiál vystoupá do výšky přes 10 km (takové události mohou být mylně zaměňovány za subpliniovské). Lávové bomby, jejichž dráha je reprezentovaná balistickou křivkou, mohou dopadat na zemský povrch dokonce 5 km od sopečného kráteru. Explozivní charakter vulkánské aktivity je dále podporován předčasným tuhnutím viskózního magmatu přímo v jícnu sopky, čímž vzniká dočasná zátka, která je posléze zničena další explozí, jakmile tlak plynů překročí její pevnost. Výbuchy mohou být tak prudké, že vyvržené kusy hornin mohou překonat rychlost zvuku, což vede k vytvoření sonického třesku.(Video ) Vulkánské erupce byly pojmenované podle italské sopky Vulcano. Lze se s nimi setkat po celém světě, typické jsou například pro indonéskou Krakatoiu, japonskou Sakuradžimu nebo kostarickou Irazú. Vzhledem k produkci velkého množství lávových bomb s velkým dopadovým poloměrem je tento typ erupce poměrně nebezpečný. V některých případech je schopný vytvořit i malé pyroklastické proudy.[15][17]

Peléjská

Peléjská erupce: 1. oblak popela 2. sopečný spad, 3. lávový dóm, 4. lávová bomba, 5. pyroklastický proud, 6. vrstvy lávy a popela, 7. stratum, 8. přívod magmatu, 9. magmatický krb, 10. dajka.

Jsou explozivní erupce, jejichž hlavním rysem je produkce pyroklastických proudů, kvůli čemuž mohou být pro své okolí velmi destruktivní. Proudy nejčastěji vznikají kolapsem lávového dómu nebo lávové jehly.[18] Zhroucení je způsobeno buď jejich strukturální nestabilitou nebo tlakem přísunu nového magmatu. Opakování tvorby a kolapsu může přetrvávat několik let nebo i desetiletí (Santiaguito). Erupce jsou úzce vázány na vysoce viskózní felsické magma ryolitového, případně andezitového složení. Neprobíhají zcela samostatně, ale často doprovázejí erupce vulkánského nebo pliniovského typu. Poprvé byly popsány při erupci karibského vulkánu Mont Pelée, který svými pyroklastickými proudy zahubil 28 tisíc obyvatel. Peléjské erupce se rovněž objevily u Hibok-Hibok (19481951), Mayon (1984) či Soufrière (2021).[14][19][20]

Pliniovská

Pliniovská erupce: 1. erupční sloupec, 2. přívod magmatu, 3. sopečný spad, 4. vrstvy lávy a popela, 5. podložní nevulkanické vrstvy původních hornin, 6. magmatický krb.
Podrobnější informace naleznete v článku Pliniovská erupce.

Pliniovské erupce jsou extrémně explozivní erupce. V podstatě se jedná o nejničivější a energeticky nejmohutnější typ erupce. Délka jejich trvání se pohybuje v řádu hodin nebo několika dnů. Jsou velmi bohaté na plyny a na značně viskózní intermediální či felsická magmata dacitovéhoryolitového složení (čedičové je poměrně neobvyklé). Prvním charakteristickým znakem pliniovských erupcí je vysoký erupční sloupec, skládající se z velmi horké směsi plynů, popela a pemzy. Jeho výška mnohdy překračuje 30 km, výjimečně může penetrovat stratopauzu, proniknout až do mezosféry a dosáhnout výšky 55 km. V těchto výškách se jeho stoupání zastavuje a nastává horizontální šíření v závislosti na rychlosti a směru větru, čímž nabývá tvaru připomínající deštník. Zemský povrch pod tímto větrem hnaným sopečným mrakem je zasypáván pyroklastiky (sopečným popelem, struskou a kusy pemzy). Tento jev se označuje jako sopečný spad, přičemž tloušťka naakumulované vrstvy se zvyšuje se zmenšující se vzdáleností ke zdroji erupce. Stabilitu sloupce udržuje jeho vlastní silné konvekční proudění a rychlost stoupání činí 150–600 m/s. Během hlavní fáze je vulkán schopný chrlit milion až 100 milionů tun materiálu za vteřinu.[15] Jakmile dojde k oslabení konvekčního proudění ve sloupci, nastává jeho částečný nebo úplný gravitační kolaps.[21] Materiál, který ho tvořil má totiž vyšší hustotu než okolní vzduch, takže se velkou rychlosti de facto „rozleje“ po svazích dolů v podobě extrémně nebezpečných pyroklastických proudů nebo pyroklastických přívalů, společně označované zkratkou PDC (Pyroclastic density current).[22][18] Cyklus zformování sloupce a jeho zhroucení se může několikrát opakovat. Druhým charakteristickým znakem tohoto typu erupcí je velké množství vyvrženého materiálu. Nízkoenergetický druh, zvaný subplinovský, produkuje 0,1–1 km³ sopečného materiálu. Erupční sloupec obecně neproniká do stratosféry. Zároveň je vlivem slabé konvekce nestabilní a podstupuje opakované kolapsy a dochází tak k tvorbě nízkoobjemových PDC. Klasická pliniovská erupce zpravidla vyvrhne 1–10 km³. Oproti tomu ultrapliniovská erupce je schopná vyvrhnout více než 10 km³. Lze se rovněž setkat se speciálním termínem freatopliniovská erupce, pro kterou je typický velmi vysoký erupční sloupec.[23] Například při erupci tichomořské sopky Hunga Tongy 15. ledna 2022 dosáhl erupční sloupec výšky 58 km.[24][25] Třetí charakteristický znak pro pliniovské erupce je vznik kaldery. Při vyvržení více než několik km³ vulkanického materiálu dochází velmi často k propadu nadložních vrstev do částečně vyprázdněného magmatického krbu, což se na povrch projeví kolapsem a úplným zánikem původního sopečného tělesa a tudíž vzniku několik kilometrů široké kaldery. Obecně jsou pliniovské erupce oproti jiným typům erupcí poměrně vzácné. Mají značný potenciál ovlivnit globální klima.[15]

Typ erupce nese jméno po Pliniu mladším. Ten byl svědkem slavné erupce Vesuvu roku 79, jež zničila římská města Pompeje a Herculaneum. Ve svém dopise pro Tacita připodobnil erupční sloupec ke středomořské borovici.[26] Navíc chronologickým popisem jednotlivých fází erupce položil nejenom první základy vulkanologie, ale také pomohl současným vulkanologům pochopit průběh erupce a ověřit jejich stratigrafický průzkum sopečných uloženin kolem Vesuvu.[27]

Surtseyská

Surtseyská erupce: 1. oblak páry, 2. vyvrhovaný materiál, 3. sopečný kráter, 4. vodní plocha, 5. vrstvy lávy a popela, 6. dno vodní plochy, 7. sopouch, 8. magmatický krb, 9. dajka

Erupce surtseyského typu jsou druhem freatomagmatické erupce, kdy větší množství vody má volný přístup do sopečného jícnu. Bouřlivá interakce se žhavým magmatem má za následek zvýšení explozivity a jeho vysokou fragmentaci.[11] Dochází tak k prudké explozi v podobě černě zbarveného výtrysku, tvořeného popelem, kusy lávy, vody, páry a plyny, schopného dosáhnout výšky i 800 m, přičemž lávové bomby mohou být vystřeleny ještě výš a do větší vzdálenosti.[28] Ihned na to začne vypuzený materiál opět padat zpět dolů. U základny výtrysku se na všechny strany vyvalí rozpínající se pyroklastický příval typu base surge, turbulentní směs přehřátých plynů a popela.[21] Poprvé byly surtseyské erupce zdokumentovány v roce 1963, kdy sopečná činnost vytvořila nový ostrov poblíž jihozápadního pobřeží Islandu, posléze pojmenovaný jako Surtsey.[29]

Subglaciální

Subglaciální erupce: 1. oblak vodní páry, 2. kráterové jezero, 3. okolní led, 4. vrstvy lávy a sopečného popela, 5. podloží, 6. polštářová láva, 7. sopouch, 8. magmatický krb, 9. dajka

Subglaciální erupce probíhají u sopek, jež jsou z většiny nebo celé pokryté ledovcem či ledovým příkrovem. Během erupce dochází vlivem tepla k roztavení nadložního ledu. Pokud dojde ke kontaktu vody s magmatem, nastává bouřlivá reakce a erupce se stává freatomagmatickou. Zvýšená explozivita podporuje fragmetaci magmatu, čímž dochází k tvorbě hustých mračen sopečného popela. Množství roztáté vody může být natolik velké, že její masa může prorazit skrz ledovec a následně způsobit masivní povodně, na Islandu zvané jako jökulhlaupy.[30][31] Jejich průtok může být dosahovat tisíců někdy i sta tisíců m³/s, čímž se mohou dokonce vyrovnat průtoku řeky Amazonky.[32] Mezi známou subglaciální erupci patří erupce islandské Eyjafjallajökull v dubnu 2010. Kvůli mračnu popela se nad velkou částí Evropy musela na několik dní přerušit letecká doprava.[33]

Podmořská

Podmořská erupce: 1. oblak vodní páry, 2. okolní voda, 3. podloží dna, 4. lávový proud, 5. sopouch, 6. magmatický krb, 7. dajka, 8. polštářová láva

Zhruba 70–80 % veškeré vulkanické činnosti na Zemi probíhá na dně oceánů a moří. Většina podmořských erupcí je soustředěna na středooceánských hřbetech podél divergentních rozhraní. Zde se dvě tektonické desky od sebe oddalují, což podporuje výstup magmatu, který převážně efuzivní (výlevnou) činností formuje novou oceánskou kůru. Málo viskózní láva, převážně čedičového složení, zde vytváří tzv. polštařovou lávu. Majoritní část oceánské kůry je složená právě těmito „polštáři“. Podmořské vulkány mohou rovněž způsobovat erupce explozivního charakteru. Takové sopky se hojně nalézají na konvergentním rozhraní (subdukce) tektonických desek. Explozivita erupcí je však značně tlumena hydrostatickým tlakem vodního sloupce, kdy s každými 100 m hloubky naroste o 1 MPa. Čím vyšší je tlak, tím více je omezována expanze sopečných plynů, neboli výbušnost. Ačkoliv většina vulkanické činnosti na planetě probíhá pod hladinou moří a oceánů, tak je kvůli velmi špatné přístupnosti málo prozkoumaná. Navíc mnohé podmořské vulkány zůstávají z velké části dosud neobjeveny.[15]

Síla sopečných erupcí

K měření intenzity sopečné erupce je možné použít několik různých klasifikačních metod. Vhodným parametrem je množství vyvrženého sopečného materiálu. Dále přichází do úvahy i doba trvání erupce, výška erupčního oblaku/sloupce či vztah mezi velikostí emitovaných úlomků a jejich dosaženou vzdáleností od zdroje. Určit množství vyvržené hmoty na základě depozitů není jednoduché. Vrstvy mohou mít na malé ploše proměnou tloušťku, složitý vzor distribuce (daný tehdejší meteorologickou situací) a mohou se usazovat v různých prostředí (na souši nebo na dně vodních ploch). Postupem času degradují působením eroze. Obzvlášť citlivá jsou například špatně konsolidovaná ložiska tefry, což má posléze negativní vliv na stanovení objemu erupce. Další překážkou je i hustota různých sopečných materiálu a odlišný obsah pórů. Hustota u lávy činí 1800 až 2700 kg/m³. U čerstvě napadané tefry zhruba 400 až 600 kg/m³, zatímco po zkonsolidování 1 600 až 2000 kg/m³. Z těchto důvodů byl zaveden DRE (Dense-rock equivalent), kdy se hustota všech materiálů převádí na jednotnou hustotu mateřského magmatu bez vzduchových bublinek.[15] Erupce Pinatuba v roce 1991 vyvrhla 8,4 až 10,4 km³ lávy, popela a pyroklastického materiálu, ale po přepočítání vyšlo DRE na 3,7 až 5,3 km³.[34]

VEI

Index vulkanické aktivity VEI (Volcanic Explosivity Index), vyvinut roku 1982, je široce užívanou škálou pro klasifikaci sopečných erupcí na základě jejich velikosti a intenzity. Číselná stupnice (od VEI 0 do VEI 8) je logaritmická, což znamená, že s každým stupněm množství vyvržené množství hmoty vzrůstá 10×. S nejnižším a nejslabším indexem VEI 0 jsou spojeny neexplozivní erupce s nízkoobjemovými lávovými proudy. Indexem VEI 5 je ohodnocena například slavná erupce Vesuvu v roce 79, kdy pyroklastické přívaly a proudy zničily veškeré osídlení v okruhu 15 km.[35] Naopak výbuch Krakatoi roku 1883 měl již VEI 6. Poněkud netypická byla erupce islandské Laki v letech 17831784. Ačkoliv se jednalo taktéž stupeň VEI 6, tak nešlo o explozivní, nýbrž o masivní výlevnou erupci. Za posledních tisíc let nastaly pouze dvě erupce s indexem VEI 7. Sopečný výbuch Tambory v roce 1815 vyvrhnul 150 km³ pyroklastik a byl tak nejsilnější erupcí v moderních dějinách. Kvůli jejím silným účinkům na globální klima (sopečná zima) se následující rok 1816 označuje jako tzv. rok bez léta.[36] Za druhou událostí byla v roce 1257 zodpovědná sopka Samalas (dnes Rinjani) v Indonésii, která z roku 1258 taktéž učinila rok bez léta.[37] Civilizace zatím nezažila žádnou erupci o síle VEI 8, za níž jsou zodpovědné supervulkány. Poslední se odehrála před 25 600 lety na Novém Zélandu,[38] přičemž se průměrně opakují každých 50 tisíc let. Mezi další takto silné erupce patří výbuch Yellowstonské kaldery před 630 tisíci roky nebo výbuch Toby před 74 tisíci roky.[39][40] Nutno dodat, že s přibývající sílou klesá četnost těchto událostí. Bylo prostudováno téměř 8 tisíc sopečných erupcí, k nimž došlo v holocénu (posledních 11 700 let), přičemž 90 % z nich mělo index VEI 3 a méně.[41]

Index vulkanické aktivity (VEI)[42][43]
VEI Množství vyvrženého materiálu Typ erupce Výška sopečného mraku/sloupce Průměrná frekvence Příklady některých erupcí
0 do 10 000 m³ havajská erupce do 0,1 km nepřetržitě Kilauea (1977), Piton de la Fournaise (2017)
1 0,01–1 mil. m³ havajská a strombolská erupce 0,1–1 km každý den Stromboli (od dob Římské říše), Nyiragongo (2002)
2 1–10 mil. m³ strombolská, vulkánská erupce 1–5 km každé 2 týdny Cumbre Vieja (1949), Sinabung (2010), Whakaari (2019)
3 10–100 mil. m³ vulkánská, peléjská a subpliniovská erupce 3–15 km každé 3 měsíce Nevado del Ruiz (1985), Soufrière Hills (1995), Semeru (2021)
4 0,1–1 km³ peléjská, subpliniovská a pliniovská erupce nad 10 km každých 18 měsíců Mont Pelée (1902), Eyjafjallajökull (2010), Taal (2020)
5 1–10 km³ peléjská a pliniovská erupce nad 10 km každých 12 let Vesuv (79), Mount St. Helens (1980), Hunga Tonga (2022)
6 10–100 km³ pliniovská a ultrapliniovská erupce nad 20 km každých 50–100 let Ilopango (~431), Krakatoa (1883), Pinatubo (1991)
7 100–1000 km³ ultrapliniovská erupce nad 20 km každých 500–1000 let Campi Flegrei (~39 280 př. n. l.), Théra (~1600 př. n. l.), Tambora (1815)
8 více než 1 000 km³ ultrapliniovská erupce nad 20 km každých 50 000 let Yellowstone (~630 000 př. n. l.), Toba (~74 000 př. n. l.)

Odkazy

Reference

  1. Sopečná činnost a sopky . geologický informační server cit. 2009-06-06. Dostupné online. 
  2. Lauren R. Marshall; Elena C. Maters; Anja Schmidt; Claudia Timmreck; Alan Robock; Matthew Toohey. Volcanic effects on climate: recent advances and future avenues online. Bulletin of Volcanology, 2022-05. Dostupné online. (angličtina) 
  3. Grant Heiken; Grant H. Heiken; Kenneth Wohletz. Volcanic Ash. s.l.: University of California Press, 1985. Dostupné online. ISBN 0520052412, ISBN 9780520052413. S. 246. (angličtina) 
  4. Staff Writer. What Is the Ratio of Water to Steam?. https://www.reference.com/ online. 2020-03-27. Dostupné online. 
  5. A. B. Starostin; A. A. Barmin; Oleg Melnik. A transient model for explosive and phreatomagmatic eruptions online. Journal of Volcanology and Geotermal Research, 2005-05. Dostupné online. (angličtina) 
  6. John Pickrell. Why deadly New Zealand volcano eruption was hard to predict. https://www.nature.com/ online. 2019-12-11. Dostupné online. 
  7. Elaine Lies. Japanese troops head for volcano after eruption to search for missing climbers. https://www.chathamdailynews.ca/ online. 2014-09-27. Dostupné online. 
  8. Pavel Bokr. Sopečná činnost a sopky. http://www.gweb.cz/ online. 2004-10-11. Dostupné online. 
  9. Dušan Hovorka. Sopky - Vznik, produkty, dôsledky. s.l.: Veda, 1990. 156 s. Dostupné online. ISBN 80-224-0014-9. (slovenština) 
  10. a b L. Krmíček. Vulkanismus : vnitřní energie Země. https://www.academia.cz/ online. 2022. Dostupné online. ISSN 2464­-6245. 
  11. a b c d J. Ball. Types of Volcanic Eruptions. https://geology.com online. Dostupné online. 
  12. Jessica Ball. Types of Vocanic Eruptions. https://geology.com/ online. Dostupné online. 
  13. Volcano Discovery. Hawaiian eruption. https://www.volcanodiscovery.com/ online. Dostupné online. 
  14. a b Robert W. Decker; Barbara B. Decker. volcano. https://www.britannica.com/ online. 2022-02-11. Dostupné online. 
  15. a b c d e f g h Haraldur Sigurðsson. The Encyclopedia of Volcanoes. s.l.: Academic Press, 2015. 1456 s. ISBN 978-0-12-385938-9. (angličtina) 
  16. Volcano Discovery. strombolian eruption. https://www.volcanodiscovery.com/ online. Dostupné online. 
  17. Vulkánské erupce. https://sites.google.com/ online. cit. 2022-12-02. Dostupné v archivu pořízeném z originálu dne 2022-09-20. 
  18. a b USGS. Pyroclastic flows move fast and destroy everything in their path. https://www.usgs.gov online. Dostupné online. 
  19. Pélejské erupce. https://sites.google.com/ online. cit. 2022-12-02. Dostupné v archivu pořízeném z originálu dne 2022-09-20. 
  20. KINDS OF VOLCANIC ERUPTIONS. https://web.archive.org/ online. cit. 2022-09-15. Dostupné v archivu pořízeném z originálu dne 2006-01-10. 
  21. a b National Park Service. Pyroclastic Flows and Ignimbrites, and Pyroclastic Surges. https://www.nps.gov online. Dostupné online. 
  22. Volcanics in outcrop: Pyroclastic density currents. https://www.geological-digressions.com online. Dostupné online. 
  23. Timothy M. Kusky. Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha’apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)? online. Journal of Earth Science, 2022-01-29. Dostupné online. (angličtina) 
  24. earth observatory. Tonga Volcano Plume Reached the Mesosphere. https://earthobservatory.nasa.gov/ online. 2022-01-15. Dostupné online. 
  25. David A. Yuen a spol. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano online. Earthquake Research Advances, 2022-07. Dostupné online. (angličtina) 
  26. Plinius mladší. Dopisy. s.l.: Svoboda, 1988. 392 s. Dostupné online. 
  27. Robert Peckyno. Who was the first volcanologist?. https://volcano.oregonstate.edu online. 2010-05-06. Dostupné online. 
  28. https://www.researchgate.net/publication/223685847_The_25_September_2007_eruption_of_Mount_Ruapehu_New_Zealand_Directed_ballistics_surtseyan_jets_and_ice-slurry_lahars
  29. D. Byrd; S. Gonzaga. Surtsey, volcanic island, emerged in 1963. https://earthsky.org online. 2021-11-14. Dostupné online. 
  30. National Park Service. Jökulhlaups. https://www.nps.gov online. Dostupné online. 
  31. G. Wells. Jökulhlaups: a Key to Glacier Dynamics, Hydrology, and Landscape Change by Greta Wells, 2021 Cryosphere WG Fellow. https://iasc.info online. 2021-09-28. Dostupné online. 
  32. P. M. Medeiros a spol. Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean online. Advancing Earth And Space Science, 2015-04-25. Dostupné online. (angličtina) 
  33. T. Karlík. Před 10 lety paralyzovala erupce islandské sopky Evropu. Teď se tam probouzí jiná oblast. https://ct24.ceskatelevize.cz online. 2020-04-14. Dostupné online. 
  34. S. Guo; W. I. Rose; G. J. S. Bluth; I. M. Watson. Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice online. Geochemistry Geophysics Geosystems, 2004-07. Dostupné online. 
  35. L. Giacomelli; A. Perrotta; R. Scandone; C. Scarpati. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompei online. Episodes, 2003-10. Dostupné online. (angličtina) 
  36. J. Luterbacher; C. Pfister. The year without a summer online. Nature geoscience, 2015-04. Dostupné online. (angličtina) 
  37. C. M. Vidal a spol. The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era online. Scientific Reports, 2016-10. Dostupné online. (angličtina) 
  38. N. W. Dunbar; N. A. Iverson; A. R. V. Eaton; M. Sigl; B. V. Alloway; A. V. Kurbatov; L. G. Mastin. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica online. Nature, 2017-09-25. Dostupné online. (angličtina) 
  39. J. Alean; R. Carniel; M. Fulle. Yellowstone Hotspot and Volcanic Activity. https://www.swisseduc.ch online. Dostupné online. 
  40. L. Crick a spol. New insights into the ∼ 74 ka Toba eruption from sulfur isotopes of polar ice cores online. Climate of the Past, 2021-10. Dostupné online. (angličtina) 
  41. L. Siebert; T. Simkin; P. Kimberly. Volcanoes of the World: Third Edition. s.l.: University of California Press, 2010. 568 s. Dostupné online. ISBN 978-0-520-94793-1. (angličtina) 
  42. Volcanic Explosivity Index (VEI). https://www.nps.gov online. Dostupné online. 
  43. C. G. Newhall; S. Self. The Volcanic Explosivity Index (VEl): An Estimate of Explosive Magnitude for Historical Volcanism online. Journal of Geophysical Research, 1982-02-20 cit. 2022-09-15. Dostupné v archivu pořízeném dne 2013-12-13. (angličtina) 

Literaturaeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Sopečná_erupce
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Úmrtí v roce 2023
Ústřední seznam kulturních památek České republiky
Čáslavský sněm
Čína
Čínsko-vietnamská válka (1406–1428)
Časová osa ruské invaze na Ukrajinu
Čeleď
Černá Hora
Černé moře
Černé uhlí
Česká Wikipedie
Česká zbrojovka Strakonice
České Budějovice
České knížectví
České království
Český král
Česko
Československá kosmonautika
Československo
Československo-polský spor o Těšínsko
ČKD#Objekty ČKD
ČKD Dopravní systémy
Členské státy NATO
Š’ Ťin-čching
Šiveluč
Štěpán z Dolan
Židé
Židovská legie
Židovská národní rada
Židovský kalendář
Život
1072
11. duben
1112
12. červen
12. prosinec
1281
1290
13. století
1303
1353
1360
1375
1380
1398
14. duben
14. srpen
14. století
1401
1408
1411
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1428
1431
1438
1441
1450
1461
1463
1471
1498
15. leden
15. století
1505
16. srpen
16. století
17. duben
17. století
18. prosinec
18. století
1884
19. květen
19. století
1913
1923
1948
1961
1963
1978
1995
2. červen
2. březen
2. duben
2. tisíciletí
20. říjen
20. duben
2004
2008
2013
2021
2023
21. květen
21. srpen
22. duben
22. září
23. duben
23. září
238
24. listopad
25. červenec
26. květen
26. září
27. červenec
28. březen
29. květen
3. červenec
3. březen
4. duben
5. prosinec
6. únor
6. prosinec
875
9. únor
905
915
Aaron Spelling
Abel Posse
Achdut ha-avoda
Adaptace
Agnès Sorel
Agostino di Duccio
Ahmad Jamal
Albrecht VI. Habsburský
Alela
Alexej Alexandrovič Gubarev
Alexios I. Komnenos
Alfred Russel Wallace
Alija
Alpinské vrásnění
Andrea Palladio
Angélique du Coudray
Angličané
Anglie
Apomixie
Architektonický styl
Architektura starověkého Říma
Architektura starověkého Řecka
Ariane 5
Asie
Aun Schan Su Ťij
Balbinus
Balduin I. Jeruzalémský
Bali
Barokní architektura
Bar Giora
Bavorské vévodství
Bavorsko
Bayezid Paša
Ben Ferencz
Bernard VII. z Armagnacu
Bettie Page
Biologická zdatnost
Biom
Bitva u Žlutic
Bitva u Kutné Hory
Bitva u Mostu
Boční kavkazský hřbet
Bořivoj I.
Boca Chica (Texas)
Bohemund II. z Antiochie
Bohemund z Tarentu
Bohuslav Korejs
Bolševici
Bor (les)
Brno
Bylina
Byzantská říše
Cévnaté rostliny
Callisto
Charles Darwin
Chomutov
Chrysococcyx
Commons:Featured pictures/cs
Craig Breen
Crescente fide
Dědičnost
Dějiny architektury
Daman a Díu
Dana Němcová
Darwinismus
David Ben Gurion
Deklarace nezávislosti Státu Izrael
Devon (geologie)
Diverzifikace
Diverzita
Donald Trump
Drážní úřad
Druhá křížová výprava proti husitům
Edesské hrabství
Ekologie
Elbrus
Elena Pampulovová
Emilia Galotti
Empír
Encyklopedie
Endemit
Epifyt
Epigenetika
Etnologie
Eufrat
Eurasie
Europa (měsíc)
Evoluční biologie
Evoluční teorie her
Evolučně vývojová biologie
Evoluce
Evropa
Evropská kosmická agentura
Evropská unie
Evropský parlament
Finsko
Francie
Fylogenetika
Galilejské knížectví
Galileovy měsíce
Ganymedes (měsíc)
Genetický drift
Genomika
Geometrie
Global 200
Goa (stát)
Gotika
Gotthold Ephraim Lessing
Gregoriánský kalendář
Héraklés
Ha-Šomer
Habsburkové
Hagana
Helvisa Brunšvicko-Grubenhagenská
Himálaj
Histadrut
Hlavní kavkazský hřeben
Hlavní strana
Hlavohruď
Hnací náprava
Horní Falc
Hradiště
Husitské války
Husitství
Hynek z Ronova
Indický oceán
Indický subkontinent
Interkosmos
Istanbulská univerzita
Itálie
Izrael
Jáva
Jacques Gaillot
Jakov Milatović
Jana Lorencová
Jan I. Burgundský
Jan Kropidlo
Jan Medicejský (1421-1463)
Jan Sádlo ze Smilkova
Jeruzalém
Jicchak Ben Cvi
Jindřich III. Kastilský
Jindřich Percy (3. hrabě z Northumberlandu)
Jindřich V. Plantagenet
Jindřich VI. Anglický
Josep Fusté
Jupiter (planeta)
Jupiter Icy Moons Explorer
Křižákovití
Křižák podkorní
Křovinná vegetace
Kamčatka
Kapraďorosty
Karbon
Karel VI. Šílený
Karel VI. Francouzský
Karel VII. Francouzský
Karel z Viany
Kaspické moře
Kateřina z Lancasteru
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kavkaz
Kavkazské jazyky
Keř
Keřové patro
Kidd Jordan
Kilíkie
Klášterní Skalice
Klášter Sezemice
Klasicismus
Klasicistní architektura
Kočkovití
Kolonialismus
Komplexita
Komunistická strana Čech a Moravy
Kosmonaut
Kosmopolitní kultura
Kostel Panny Marie (Pražský hrad)
Kostnický koncil
Kristiánova legenda
Kukačka nádherná
Kukačky
Kumomanyčská propadlina
Kutná Hora
Latinská Amerika
Ledovec
Lesní plášť
Lesostep
Letecké muzeum Kbely
Lockheed F-117 Nighthawk
Louka
Lucemburkové
Múte Bourup Egede
Měšek I. Těšínský
Město
Městská památková zóna
Městské opevnění (Tachov)
Maďarsko
Macao
Madeira (ostrov)
Mahulena Čejková
Makroevoluce
Malý Kavkaz
Malacký průliv
Malvice
Mamlúci
Manuel II. Palaiologos
Mapaj
Martin Húska
Martin V.
Marxismus
Mary Quantová
Medonosná rostlina
Medvěd hnědý
Medvěd lední
Mehmed I.
Mendelovy zákony dědičnosti
Mezinárodní svaz ochrany přírody
Mezozoikum
Mikroevoluce
Milo Đukanović
Mircea I.
Moderní evoluční syntéza
Mokřad
Moluky
Mongolové
Montes Caucasus
Mor
Myanmar
Mys Dobré naděje
Náhorní Karabach
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Historie stránky
Nápověda:Obsah
Národní liga pro demokracii
Německo
Nadace Wikimedia
Nagasaki
Nanni di Banco
Neoklasicismus
Nigel Lawson
Nizozemci
Normané
Nukleárie
Obléhání husitů v Chotěboři
Obléhání Jeruzaléma (1099)
Obléhání Kadaně 1421
Odúmrť
Oldřich IV. Vavák z Hradce
Opolské knížectví
Osmanská říše
Osvětimské knížectví
Přemek Ratibořský
Přemyslovci
Přemysl Otakar II.
Přirozený výběr
Přivrácená strana Měsíce
Paříž
Padělek
Palearktická oblast
Paleozoikum
Palestina v osmanském období
Palladiánská architektura
Papež
Paradigma
Parafyletismus
Patrik Kotas
Pavouci
Perm
Petrohrad
Petr Hromádka
Petr Kániš
Petr Zmrzlík ze Svojšína (mladší)
Petr Zmrzlík ze Svojšína (starší)
Pevnost (stavba)
Piastovci
Pilot
Plavby Čeng Chea
Plavuň vidlačka
Plavuně
Plzeňský kraj
Po'alej Cijon
Podlažický klášter
Polární kruh
Polsko
Poltava
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Portugalština
Portugalci
Portugalská Indie
Poznaň
Průmyslová revoluce
Pražský hrad
Praha
Pravda (noviny)
Prezident Černé Hory
Prezident Izraele
Prométheus
První křížová výprava
Pupienus
Růžovité
Rakousko-Uhersko
Ratibořské knížectví
Renesanční architektura
Rodné jméno
Rodozměna
Rod (biologie)
Rokoko
Rouen
Rozmnožování
Rudé moře
Ruská invaze na Ukrajinu
Ruské impérium
Ruský Dálný východ
Rusko
Saljut 6
Semiaridní podnebí
Sergio Gori
Sesterská skupina
Severní Afrika
Severoatlantická aliance
Seznam burgundských vévodů
Seznam opolských knížat
Seznam prezidentů Spojených států amerických
Seznam těšínských knížat
Seznam velvyslanců České republiky v Rusku
Sibiř
Silur
Sionismus
Skalník černoplodý
Skalník (Cotoneaster)
Skalník celokrajný
Skalník rozkladitý
Slezská knížectví
Smíšený les
Sobecký gen
Sojuz 28
Sopečná erupce
Soubor:2016 Malakka, A Famosa (03).jpg
Soubor:Arc Triomphe.jpg
Soubor:Bettie Page-2.jpg
Soubor:Cieszyn Piast dynasty COA.png
Soubor:Darwin Tree 1837.png
Soubor:Flag of Koryakia.svg
Soubor:Henry VI of England, Shrewsbury book.jpg
Soubor:Karukold 2010.jpg
Soubor:Kavkasioni.JPG
Soubor:Mehmed I miniature.jpg
Soubor:Narodni Divadlo, Estates Theater, Prague - 8638.jpg
Soubor:Nuctenea umbratica (Araneidae) - (female imago), Arnhem, the Netherlands.jpg
Soubor:Panthera tigris altaica 09 - Buffalo Zoo.jpg
Soubor:RT6N1.JPG
Soubor:Shining Bronze-Cuckoo Dayboro.JPG
Soubor:Spitygniew I.jpg
Soubor:Starr 020221-9400 Cotoneaster pannosus.jpg
Soubor:Tachov - městské hradby ze Zámecké ulice.JPG
Soubor:Tancrède de Hauteville.jpg
Soubor:Vladimír Remek (2018).jpg
Soubor:Yitzhak Ben-Zvi.jpg
Sovětský svaz
Spa
SpaceX
SpaceX South Texas launch site
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciace
Spojené státy americké
Spora
Spytihněv I.
Střední Evropa
Stará Boleslav
Starship (SpaceX)
Starship Test Flight
Stavovské divadlo
Step
Stoletá válka
Strom
Sudokopytníci
Sumatra
Svatá říše římská
Svatá Ludmila
Svatá země
Svatopluk I.
Symetrie
Těšínské knížectví
Těšínsko
Tachov
Tankred Galilejský
Tarsus
Tatra RT6N1
Technické muzeum v Brně
Teorie přerušovaných rovnováh
Teplomilná doubrava
Tetín (hrad)
Texas
Tramvaj
Trias
Trojúhelník
Tropický deštný les
Tropický pás
Tundra
Turci
Turecko
Tygr
Uhersko
Václav IV.
Války růží
Výchoz
Velké kočky
Velký Kavkaz
Velkomoravská říše
Vesmírná stanice
Vitislav (895)
Vladimír Remek
Vladimir Kara-Murza
Vladislav I. Opolský
Vladislav II. Jagello
Vladlen Tatarskij
Vlajka Korjackého autonomního okruhu
Vojenská junta
Vojenský převrat v Myanmaru 2021
Volby do Knesetu 1949
Vraneček
Vratislav Effenberger
Vratislav I.
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2023
Wikipedie:Článek týdne/Archiv
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2023
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/duben
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2023
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Západní svět
Zadeček
Zadní Indie
Zatčení
Zdeněk Ziegler
Zeus
Zikmund Lucemburský




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk