Sopka - Biblioteka.sk

Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Sopka

Výbuch sopky Saint Helens (USA), 1980

Sopka alebo vulkán je geomorfologický útvar vytvorený magmou vystupujúcou na zemský povrch (kde sa nazýva láva), prípadne pod vodou alebo ľadom. Na Zemi sa sopky vyskytujú pozdĺž hraníc tektonických platní a v takzvaných horúcich škvrnách. Názov vulkán je odvodený od názvu sopky Vulcano v Tyrrhenskom mori, prenesene od rímskeho boha Vulkána. Veda, skúmajúca sopečnú činnosť, sa nazýva vulkanológia.

Iné formy sú bahnové sopky (tieto, až na pár výnimiek nesúvisia so sopečnou činnosťou) a ľadové sopky (vyskytujú sa na niektorých mesiacoch slnečnej sústavyEuropa, Enceladus, Triton, Titan).

Príčiny a výskyt sopečnej činnosti

Schéma stratovulkánu: 1. magmatický kozub, 2. pôvodná geologická stavba, 3. prívodný komín, 4. základňa sopky, 5. sill, 6. žila, 7. popolové vrstvy, 8. úbočie sopky, 9. lávové vrstvy, 10. hrdlo, 11. parazitický kráter, 12. lávový prúd, 13. ústie, 14. sopečný kráter, 15. popolový mrak

Roztavená hornina sa nazýva magma. Tvoria ju spravidla viaceré zložky, ktoré majú plynné, kvapalné aj pevné skupenstvo.[1] Magma, ktorá vystúpi na povrch, sa označuje láva. Tak ako väčšina procesov vnútri Zeme, aj dynamika magmy je zle preskúmateľná priamymi pozorovaniami. Napriek tomu je však známe, že erupcia môže nasledovať po prechode magmy cez kôru pod sopku, kde vypĺňa miesto, zvané magmatický kozub.

Vznik magmy súvisí so stavbou Zeme, hlavne s plášťom a zemskou kôrou, ktorá leží nad ním. Zemský plášť by mal mať zloženie zodpovedajúce z 3/4 hornine, ktorá sa volá peridotit, a z 1/4 bazaltu. Plášť je väčšinou v tuhom skupenstve a magma sa v ňom tvorí len zriedka, ak dôjde k jeho nahriatiu, ktoré presiahne teplotu tavenia minerálov v jeho horninách. Termálne prúdy poháňajúce tektonické platne môžu spôsobiť takéto nahriatie plášťa, ktoré potom spôsobí preteplenie oblasti v nadložnej zemskej kôre. Miesto preteplenia plášťa sa nazýva plášťová anomália[2]. Magma (tavenina), ktorá pri takomto preteplení vzniká, je ľahšia ako okolité horniny a má preto tendenciu prenikať smerom nahor. Nezriedka sa pri prechode kôrou výrazne pozmení v dôsledku vzájomného pôsobenia s horninami, cez ktoré preniká[3]. Magmatický kozub, ktorý je zásobníkom magmy, môže mať rôznu pozíciu v závislosti od toho, či sa nachádza v kôre kontinentov alebo oceánov. V kontinentálnej litosfére, ktorá je hrubšia, ale ľahšia, zvyknú vznikať magmatické kozuby v hĺbke okolo 20 – 30 km V oceánskej litosfére, ktorá je ťažšia, ale tenšia, sa umiestňujú v hĺbke 60 – 80 km. Keď sa magma prenikajúca z plášťa zastaví v magmatickom kozube, dochádza v oblasti spodnej kôry k takzvanému podstlaniu (angl. underplating). Horúca magma bazaltového zloženia, pochádzajúca z plášťa, natavuje nadložné kôrové horniny, dochádza k frakčnej kryštalizácii za vzniku redšej taveniny, ktorá sa zastaví asi 7-8 km hlboko. Aj v tejto oblasti sa magma ďalej diferencuje.

Výstup magmy z kozuba na povrch môže byť pokojný – efuzívny, alebo môže mať explozívny charakter (ak dôjde k rýchlemu poklesu teploty, z magmy sa rýchlo uvoľnia rozpustené plyny, čo vyvolá obrovský tlak, prípadne je tento tlak spôsobený premenou vody z okolia výstupu na vodnú paru). Produktmi efuzívnej erupcie sú hlavne lávové prúdy, pri explozívnej sa pridávajú rôzne vulkanoklasty (sopečný popol, pemza, sopečne bomby).

Pravdepodobne najznámejším sopečným útvarom je kráter. Je to približne kruhový útvar, v strede ktorého ústi sopečný komín. Môže nadobúdať veľké rozmery, ak sa dôsledkom silnej erupcie prepadnú jeho steny, tak sa nazýva kaldera. Z krátera je magma vyvrhovaná do okolia. Kráter je obvykle umiestnený na vrchole sopky, sopka má často tvar kužeľovej hory.

Ak je sopka príliš vysoká, niekedy sa tvoria parazitické (bočné) krátery na úbočiach. Ďalšie sopečné útvary sa dajú objaviť po erodovaní vrchných vrstiev sopky – rôzne lávové žily (nazývané dajky, alebo neky), dómy, jaskyne vytvorené sopečnými kanálmi, a mnoho iných.

Tektonické prostredia

Bližšie informácie v hlavnom článku: Platňová tektonika

Sopky sa môžu vyskytovať vo všetkých bežných tektonických prostrediach. Podstatná časť vulkanizmu je však viazaná na stredooceánske chrbty a ostrovné oblúky.

Typy sopečnej činnosti na povrchu Zeme

Divergentné okraje platní

Bližšie informácie v hlavnom článku: divergentný okraj

Na hraniciach dvoch rozchádzajúcich sa platní sa vulkanizmus vyskytuje najčastejšie (asi 75% objemu všetkých vulkanitov[4]). Horniny, ktoré vznikli týmto spôsobom, tvoria asi 2/3 zemského povrchu. Ak sa vzďaľujú dve oceánske platne, väčšinou sa to odohráva pod hladinou oceánov na stredooceánskych chrbtoch. Na hranici rozchádzajúcich sa platní magma ľahko preniká cez oslabenú kôru a na povrch sa dostáva systémom zlomov v stredooceánskom chrbte. Výstup magmy tu prebieha z veľkých hĺbok (až z hranice plášťa), magmy, ktoré tu vznikajú, však majú pomerne jednotvárne bazaltové zloženie. (Nazývajú sa primitívne a označujú sa skratkou MORB – Mid-Ocean Ridge Basalt). Keďže vulkanizmus na divergentných okrajoch oceánskych platní je väčšinou podmorský, na povrchu ho možno pozorovať iba veľmi zriedkavo, napr. na ostrove Tristan da Cunha alebo Islande[3]. Bežným sprievodným prejavom sopečnej aktivity v tomto prostredí je vysoká hydrotermálna aktivita, ktorej typickým predstaviteľom sú čierni fajčiari.

Konvergentné okraje platní

Bližšie informácie v hlavnom článku: konvergentný okraj

Pri strete dvoch platní je sopečná činnosť tiež veľmi častá. Pri poklese (subdukcii) oceánskej platne pod inú platňu (s oceánskou, alebo kontinentálnou kôrou) dochádza približne v hĺbke 100 km k jej zahrievaniu a následnej dehydratácii. Uniknutá voda v podobe pary prestupuje okolitým plášťom, ktorý má iné zloženie ako oceánska kôra. Vysoký tlak a teplota vodnej pary zapríčiňuje parciálne tavenie okolitých hornín. Magmy tohto typu sa nazývajú vápenato-alkalické (podľa ich zloženia), majú vysokú viskozitu, obsahujú veľa rozpustených plynov a ich erupcie sú často veľmi explozívne. Môžu mať rôzne zloženie, od bazaltov cez andezity, dacity až po ryolity. Pre konvergenciu dvoch platní sú typické vulkanické ostrovné oblúky. Napriek tomu, že sopky ostrovných oblúkov sú na Zemi najbežnejšie, vytvárajú len okolo 10 – 20 % celkovej sopečnej aktivity[5]. Medzi známe sopky konvergentných okrajov patrí Farallon de Pajaros v Severných Mariánach. Dnes už nečinnými sopkami tohto typu boli aj sopky slovenského Vihorlatu a Slanských vrchov[6].

Vnútroplatňový vulkanizmus

Bližšie informácie v článkoch: horúca škvrna (geológia) a rift

Vnútroplatňový vulkanizmus zahŕňa rôzne typy vulkanizmu, ktorý sa nevzťahuje k pohybom na okrajoch platní popísaných vyššie. Patrí sem vulkanizmus horúcich škvŕn a riftových zón.

Svetové rozšírenie najväčších horúcich škvŕn.

Princípom a príčinou vulkanizmu horúcich škvŕn je vo výstup horúcich magmových diapírov priamo z plášťa cez zemskú kôru.[5] Plášťové diapíry sú zdrojom taveniny, ktorá podstieľa litosféru, nemožno si ich však predstavovať ako jednoduché bodové zdroje tepla[7]. Parciálne tavenie v diapíroch vo vrchnom plášti má za následok vznik veľkých objemov magmy obyčajne bazaltového zloženia. Horúce škvrny sú tiež zrejme dôležitým činiteľom pri rozpadoch superkontinentov[8]. Klasickým príkladom sú Havajské ostrovy, ktoré boli vytvorené horúcou škvrnou pod Tichým oceánom podobne ako Galapágy. Ďalší dobrý príklad je Yellowstone[9]. Island ako produkt takéhoto vulkanizmu je trochu zložitejší príklad, pretože tu sa nachádza kombinácia horúcej škvrny a divergentného okraja, tým pádom je chemické a minerálne zloženie magiem odlišné. Medzi vnútroplatňové vulkanity možno radiť i rozsiahle erupcie platóbazltov, ktorých spôsob vzniku je zrejme príbuzný vulkanitom viazaným na horúce škvrny. Známe sú z Jávy alebo Dekanskej plošiny[10].

Počiatočné štádium rozpadu kontinentov je tiež sprevádzané vulkanizmom, ktorý je viazaný na riftové zóny. Magma z plášťa tu musí prechádzať hrubou kontinentálnou kôrou pri čom sa mení jej primitívne zloženie. Vulkanity riftových zón majú väčšinou alkalický charakter. Nachádzajú sa tu nielen primitívne bazaltové lávy (bazalty, bazaltické andezity), trachyty ale aj prechodné a kyslé magmy (ryolity)[10]. Niektoré majú veľmi netradičné zloženie napr. karbonatity. Veľké odlišnosti v zložení láv sú zapríčinené prítomnosťou kontinentálnej kôry, čo spôsobuje modifikáciu primitívnych magiem. Typickým príkladom vulkanizmu riftových zón sú sopky v okolí Východoafrickej priekopovej prepadliny.

Klasifikácia a formy sopiek

Sopky (alebo sopečná činnosť) sa rozdeľujú podľa viacerých faktorov:

  • podľa eruptovaného materiálu
  • podľa priebehu erupcií
  • podľa tvaru
  • podľa aktivity

Eruptovaný materiál

Rozdelenie erupcií na základe typu materiálu je jedno z najčastejších rozdelení. Ak magma obsahuje veľa (>65 %) oxidu kremičitého, nazýva sa felzická. Felzické lávy sú veľmi viskózne a eruptujú v podobe dómov, alebo krátkych lávových prúdov, najčastejším tvarom sopky je stratovulkán. Tento typ vulkanizmu je veľmi explozívny, nakoľko viskózna magma v sebe zadržiava veľký obsah fluíd (plynov). Častý je aj výskyt pyroklastických prúdov, obsahujúcich rozžeravené častice (až 800 °C) a plyny. Tieto prúdy sa pohybujú veľkou rýchlosťou po svahu sopky a ničia všetko, čo im stojí v ceste. Dobrým príkladom je sopka Pelée v Karibiku, alebo Pinatubo na Filipínach.

Na druhej strane, opačný prípad sú erupcie magiem, obsahujúcich malé množstvá SiO2 (<45 %), nazývané aj mafické. Magma tohto typu obsahuje málo rozpustených plynov a jej viskozita je oveľa menšia. Lávy tvorené z mafickej magmy majú tendenciu tiecť dosť rýchlo a sú vyvrhované bez extrémnych výbuchov. Sopky s takýmto typom magmy sa nazývajú štítové, klasický vzor sú havajské sopky Mauna Loa a Kilauea.

Morfologické typy sopečných erupcií

Bližšie informácie v hlavnom článku: Typy sopečných erupcií

Podľa objemu, správania eruptujúcej lávy a vonkajších prejavov erupcie rozlišujeme nasledujúce typy[3][11]:

  • havajská (pokojná erupcia tekutej lávy)
  • vulkánska (vyvrhovanie kusov pevnej lávy – lávových balvanov a tvorba popolového mraku tvaru karfiolu)
  • strombolská (pravidelné chrlenie žeravej hmoty z krátera)
  • pélejská (prúdy rozžeravených častíc, pohybujúcich sa dolu svahom sopky)
  • plínijská (explozívna erupcia s obrovským pracho-popolovým mrakom)

Formy a stavba sopiek

Štítová sopka Hekla na Islande.

Centrálne erupcie

Kaldery vulkanického komplexu Uzon na Kamčatke.
Stratovulkán Concepción v Nikarague.
  • Štítový vulkán: Sopky produkujúce veľké množstvá rýchlo tečúcich láv s nízkou viskozitou budujú hory tvaru štítu, často s viacerými kalderami rôzneho veku[12]. Tvoria ich väčšinou mafické horniny ako sú bazalty alebo trachyty. Takéto sopky majú širokú základňu a nízky uhol náklonu úbočia. Lávové prúdy dosahujú značnú dĺžku. Jeden z najdlhších lávových prúdov – 120 km v priemere vyprodukovala sopka Mauna Loa na Havaji. Havajské ostrovy sú veľmi názorným príkladom štítových vulkánov. Mauna Loa je vôbec najväčšia sopka na Zemi, s celkovým objemom 74 000 km³[13]. Štítový vulkán je aj Olympus Mons, najvyššia hora v slnečnej sústave. Menšie verzie štítových vulkánov sú lávové kužele alebo lávové kopy.
  • Troskové a lávové kužele: Troskovými (alebo pyroklastickými) kužeľmi sa označujú menšie (40 – 400 m vysoké) sopky nadobúdajúce tvar kužeľa, ktoré sú tvorené explozívnymi erupciami trosiek a pyroklastík. Ich výška je oproti iným formám malá, obvykle sa stávajú neaktívnymi po krátkej dobe. Niekedy eruptujú len raz. Lávové kužele sú tvorené prevažne bazaltovou, veľmi mobilnou lávou, ktorá sa rýchlo rozteká po okolí. V rámci lávových kužeľov sú rozoznávané dva typy. Islandský typ, ktoré sú spravidla len niekoľko stoviek metrov vysoké, zatiaľ čo kužele havajského typu môžu mať priemer až 400 km a dosahovať výšku 9 000 m odo dna mora.
  • Stratovulkány: Nazývajú sa aj kompozitné alebo vrstevnaté vulkány sú vysoké vrchy (napr. Andské sopky patria medzi najvyššie na Zemi), ich stavba je tvorená striedaním sa vrstiev pyroklastík a lávových prúdov. Častým typom sú explozívne erupcie, nakoľko magma je viskóznejšia, čo vlastne tiež zodpovedá ich tvaru, láva nemá tendenciu roztekať sa doďaleka ako pri štítových sopkách a stuhne už na svahu. Stratovulkánmi je tvorený sopečný pás okolo celého Pacifiku, ktorý sa nazýva aj Ohnivý kruh. Dobrým príkladom takéhoto typu sopiek je Fudžisan v Japonsku. V súčasnosti už neaktívne sopky, ktoré sa na území Slovenska a okolitých krajín vytvárali v priebehu neogénu, tiež vulkanológovia považujú za stratovulkány.
  • Supervulkán: Termínom supervulkán sa zvyknú označovať obrovské sopky, ktorých erupcie boli zničujúce, často mali dopad na celý kontinent (spôsobili aj klimatické zmeny na celej Zemi). Ako supervulkán sa označuje kaldera už neaktívnej sopky v Yellowstonskom národnom parku, prípadne sopka Krakatoa v Indonézii.
  • Podmorské vulkány: Podmorský vulkanizmus je hlavný fenomén stredooceánskych chrbtov. Väčšina erupcií je nepozorovateľná na hladine, dajú sa detegovať hydrofónmi. Častá forma sú príkre stĺpy, len ojedinele sa tvoria sopečné ostrovy. Charakteristický tvar lávových prúdov sú tzv. pillow (poduškové) lávy.
  • Subglaciálne vulkány: Subglaciálne sopky sú sopečné formy, ktoré eruptujú pod ľadovou pokrývkou. Vyskytujú sa v Antarktíde a na Islande, z minulosti sú známe aj z Kanady. Charakteristické pre ne je zarovnaný vrchol a terasovité svahy. Topiaci sa sneh a ľad rýchlo ochladzujú lávu, preto sú výsledné štruktúry lávových prúdov podobné štruktúram podmorských vulkánov. Pre svoj tvar sa niekedy nazývajú aj tabuľové hory, v Britskej Kolumbii je zaužívaný lokálny názov tuya.
  • Vulkanické dómy a ihly: Menej pohyblivé, kyslé lávy niekedy vytvárajú kumulodómy, či tholoidy, telesá rôznej veľkosti väčšinou sa nachádzajúce priamo vo vulkanickom kráteri. Niekedy môžu byť vytlačené expandujúcou lávou, vulkanickými plynmi a vodnými parami, do rôznych výšok nad samotný kráter. Tieto formy môžu vznikať aj pomerne rýchlym vytlačením z krátera, rýchlosťou i niekoľko desiatok metrov za deň. Podobným spôsobom vznikajú aj vulkanické ihly, obvykle bizarných tvarov. Všetky tieto telesá sú pokračujúcou aktivitou sopky obvykle zničené[14].
  • Kaldery: Výbuchom, alebo prepadnutím sopečného kužeľa, v dôsledku vyprázdnenia magmatickej komory, vznikajú kotlovité priehlbiny často značných rozmerov, označované ako kaldery. Sú známe z prejavov suchozemskej ako i podmorskej sopečnej činnosti. Kaldery sú typickou súčasťou zrelých vulkanických kužeľov[14]. Kolapsové kaldery svojimi rozmermi prevyšujú rozlohu predošlých kráterov, ich vznik je veľmi deštruktívny a patrí medzi najzničujúcejšie fenomény na zemskom povrchu. Okrem kolapsových kalder, sú známe aj explozívne a erózne kaldery[1].
  • Maary: Zvláštnym druhom kráterov zaplavených vodou sú maary. Väčšinou sa nachádzajú v skupinách, 2 a viac pohromade. V dôsledku prítomnosti vody majú pomerne explozívne erupcie sprevádzané silnými výronmi pár[14].

Lineárne erupcie

Druhým typom vulkanických erupcií sú tie, ktoré prenikajú na povrch pozdĺž plôch puklín a zlomov. Tento typ erupcí sa predpokladá v kontinentálnej ako i oceánskej kôre. Na kontinentoch k nemu prináležia rozsiahle výlevy platóbazaltov, tiež známe ako trapy. Tieto výlevy dosahujú rozlohu tisícov kilometrov štvorcových a hrúbky tisíce metrov.

Významným prejavom vulkanizmu vo všeobecnosti sú erupcie riftových zón a osových častí stredooceánskych chrbtov. Riftový systém dnešných oceánov má dĺžku okolo 70 000 km[14]. V dôsledku vzďaľovania oceánskych platní na stredooceánskych chrbtoch do priestoru medzi nimi neustále vniká nová magma, tvorená najmä bazaltami (tzv. N-MORB).

Areálne erupcie

Ak sopečná aktivita preukázateľne nie je sústredená dlhšiu dobu na jednom mieste ale postupne mení polohu, označuje sa ako areálna. Aktivita sopiek, ktoré sú súčasťou areálneho vulkanizmu je prevažne krátkodobá. Niekedy sú vulkány tohto typu rozmiestnené v jednej línii, no môžu sa nachádzať i v nepravidelných skupinách, ktoré majú spoločný pôvod[14].

Aktivita

Medzi vulkanológmi neexistuje všeobecný konsenzus na definovanie toho, či je sopka aktívna. Problém je v tom, že čas medzi jednotlivými erupciami nie je pravidelný.

Vedci pokladajú sopku za aktívnu, ak počas nedávnej histórie aspoň raz eruptovala (čo nie je jednoznačné, pretože rozličné inštitúcie daný čas definujú rôzne – od 200 až po 10 000 rokov). Takisto sa za aktívnu označuje sopka s práve prebiehajúcou erupciou alebo so zvýšenou aktivitou (únikom) plynov z krátera, príp. s výskytom častých zemetrasení.

Ako spiaca sa označuje sopka, ktorá bola síce aktívna, ale momentálne žiadne známky aktivity nejaví.

Vyhasnutá, alebo neaktívna je taká sopka, pri ktorej sa vedci zhodli, že už nikdy nebude eruptovať (t. j. nejaví žiadne známky aktivity spomínané vyššie).

Toto rozdelenie niekedy prináša kuriózne situácie. Napríklad už spomínaná sopka v Yellowstone naposledy eruptovala pred viac ako 10 000 rokmi, ale keďže v danej oblasti sú ešte stále aktívne zemetrasenia a hydrotermálna činnosť, tak by sa mala považovať za aktívnu (spiacu). Prípadne vrch Puy de Dôme vo Francúzskom stredohorí, aj keď posledná erupcia prebehla v roku 5760 pred Kr. by tiež mala byť stále považovaná za aktívnu.

Svet už zažil viacero tragédií, keď boli zničené mestá pri výbuchu sopky považovanej za vyhasnutú. Najstaršia je azda tragédia, ktorá sa odohrala v antických Pompejách, kde výbuch Vezuvu, do vtedy považovaného za neaktívnu sopku, zničil mesto Pompeje, ako aj ďalšie mestá v okolí.

Prejavy a produkty sopečnej činnosti

Sopečná bomba.
Neutuhnutá láva sopky Kilauea.
Laháry z erupcie sopky Santa María v Guatemale.
Popolový spád pri výbuchu sopky Pinatubo na Filipínach, 1991.

Sopečná činnosť môže nadobúdať rozličné formy:

Vyvrhovanie magmy z krátera a emisie plynov sú dobre pozorovateľné fenomény sopečnej činnosti.

Prvá z nich, vyvrhovanie magmy, môže byť pokojná, vtedy hovoríme o efuzívnej erupcii. Takto vyvrhovaná magma má nízku viskozitu a nízky obsah rozpustených plynov. Spravidla sú to erupcie bazaltov (Havajské ostrovy, Island). Opakom je explozívna erupcia – vtedy vyvrhovanie sprevádza vyletovanie väčších (hovoríme im aj sopečné bomby), alebo menších (pyroklasty) úlomkov žeravej lávy z krátera. Nastáva, ak je vplyvom vysokých teplôt a tlakov vnútri Zeme v magme vysoký obsah rozpustených plynov. Pri výstupe zo sopečného komína dochádza k zníženiu tlaku, čo vyvolá mechanizmus podobný otvoreniu sódovkovej fľaše, rozpustené plyny sa rýchlo uvoľnia a spôsobia explóziu. Takýto typ erupcie sa vyskytuje v aktívnych (konvergentných) okrajoch tektonických platní.

K explozívnym erupciám zaraďujeme aj freatické erupcie. Nastávajú, ak magma pri svojom výstupe narazí na väčší objem vody (povrchovej, alebo podzemnej). Vplyvom vysokých teplôt sa voda okamžite mení na paru a spôsobí explóziu vodných pár, prachu, skál a vulkanických bômb.

Sopečná erupcia sa prejavuje aj emisiou obrovského množstva plynov do ovzdušia. Ich zloženie je rôzne, líši sa od jedného vulkánu k druhému. Najväčší výskyt majú vodné pary, potom oxid uhličitý (CO2) a oxid siričitý (SO2). Ďalšími sopečnými plynmi sú sulfán (H2S), chlorovodík (HCl) a fluorovodík (HF).

Veľké, explozívne erupcie vyvrhujú spomínané plyny spolu so sopečným prachom až do stratosféry (~20 km nad povrch Zeme), čo ovplyvňuje počasie na Zemi: oxid siričitý sa mení na aerosól kyseliny sírovej (H2SO4) a ten zvyšuje albedo Zeme. HCl a HF sa rozpúšťajú vo vode a padajú naspäť na Zem v podobe kyslých dažďov. Vulkanickou aktivitou sa do ovzdušia uvoľňuje ročne 145 – 230 miliónov ton oxidu uhličitého.

Bližšie informácie v článkoch: pyroklastický prúd a lahár

Pyroklasitcké prúdy sú fluidizované zmesi žeravého prachu, plynov a popola (teplota až 800 °C), ktoré sa obrovskou rýchlosťou (150 km/hod−1) rútia dolu úbočím stratovulkánov do značnej diaľky a ničia všetko čo im príde do cesty. Im podobné sú laháry (termín pochádzajúci z Indonézie): ide však o bahnové zmesi vody z topiacej sa snehovej čiapočky na vrchole vulkánu a prachovo-popolových usadenín na svahoch. Tieto tiež stekajú po svahoch veľkou rýchlosťou do značných diaľok (aj 50 km).

Pyroklastické prúdy a laháry sú vďaka svojej kinetickej energii veľmi nebezpečné (niekedy viac ako samotná láva – sú totiž omnoho mobilnejšie): žeravý prúd pyroklastík pri výbuchu sopky Pelée v roku 1902 zabil asi 30 000 ľudí na v meste Saint-Pierre na Martiniku, lahárový prúd zo sopky Nevado del Ruiz v Kolumbii zasa pochoval pod osemmetrovou vrstvou popola a bahna mesto Armero spolu s 25 000 obeťami.

So sopečnou činnosťou majú súvislosť aj iné fenomény: zemetrasenia, fumaroly, gejzíry a horúce pramene.

Predpovedanie sopečných erupcií

V súčasnosti vedci nedokážu presne predpovedať, kedy niektorá sopka vybuchne, aj keď indície o možnej erupcii nie je ťažké získať (ide skôr o predpoveď, kedy presne nastane erupcia). Na to sa využívajú nasledovné indície:

Seizmická aktivita

Záchvevy pôdy nastávajú vždy, keď sa sopka prebúdza k životu. Niektoré vulkány majú permanentne slabú seizmickú aktivitu, ale jej zvýšenie je signál začiatku erupcie. Seizmická aktivita sopiek má tri hlavné formy: krátkotrvajúce otrasy, dlhotrvajúce otrasy a harmonické záchvevy.

  • Krátkotrvajúce otrasy sú podobné normálnym zemetraseniam na zlomoch. Súvisia s poruchami v horninách, keď sa magma pretláča na povrch. Sú signálom, že magma je v blízkosti povrchu.
  • Dlhotrvajúce otrasy indikujú zvýšenie tlaku plynov. Tieto oscilácie sú podobné vibráciám zvuku v miestnosti.
  • Harmonické záchvevy spôsobuje tlak magmy na okolité pevné horniny. Toto sa môže prejaviť ako „hukot“, alebo „bzučanie“, čo cítia aj zvieratá a ľudia.

Zákonitosť seizmických aktivít je dosť komplexná, ale vo všeobecnosti platí princíp, že zvyšovanie seizmickej aktivity vedie k blízkej erupcii, najmä ak pred tým bolo obdobie pokoja.

Sírové fumaroly – White Island, Nový Zéland

Zvýšená emisia plynov

Ako magma stúpa k povrchu, klesá v nej tlak, čo spôsobí jej degazáciu. Celý proces sa podobá otvoreniu sódovkovej fľaše (únik CO2). Zvýšenie emisií oxidu siričitého (SO2), ako jedného z hlavných sopečných plynov, je jedným z hlavných oznamovateľov prísunu veľkého množstva magmy blízko k povrchu. V máji 1991 sa zvýšila emisia SO2 zo sopky Pinatubo na Filipínach. O dva týždne neskôr (28. máj 1991) množstvo emitovaného oxidu siričitého narástlo až na 5 000 ton (10-krát viac ako predtým). 12. júna 1991 sopka vybuchla. Tesne pred výbuchom však množstvo emitovaného SO2 pokleslo pod bežnú úroveň. Tento jav si vedci vysvetľujú tým, že tesne pred výbuchom sa plyny uzatvárajú v chladnúcej magme, čo len zvýši tlak a šance na explozívnu erupciu.

Deformácie povrchu

Zväčšovanie sa sopky signalizuje akumuláciu magmy pod povrchom. Vedci monitorujúci sopky často merajú zmenu náklonu úbočia sopky a tieto zmeny zaznamenávajú. Zmena náklonu (vydutie sa základne sopky) spolu so zvýšením emisií SO2 a častejším výskytom otrasov v okolí sopky s veľkou pravdepodobnosťou naznačujú blízku erupciu. Niekedy sú deformácie ťažko pozorovateľné, ale stále sa používajú na predpovedanie erupcií.

Sopečná činnosť na území Slovenska

Kamenný vodopád v Cerovej vrchovine – bazaltové teleso pliocénneho veku so stĺpcovou odlučnosťou.
Podhradské skaly – andezitové horniny Vtáčnika.
Bližšie informácie v hlavnom článku: Neogénne vulkanity karpatského oblúka

Vulkanizmus na území Slovenska (ale nielen tam, ale aj v Maďarsku, Rumunsku a na Ukrajine) prebiehal v období treťohôr (neogénpleistocén) až do štvrtohôr. Na Slovensku ním boli vytvorené viaceré pohoria, ktoré sa podľa lokality rozdeľujú na tri väčšie celky, pričom najväčšiu oblasť zaberajú stredoslovenské vulkanity (~5 000 km²):

Vulkanická aktivita sa začala pred 16,5 mil. rokmi a posledné aktivity boli datované pred 100 000 rokmi. Jej príčinou bol pokles oceánskej základne flyšového pásma pod horniny Karpatského oblúka. Celý proces začal najskôr aktivitou andezitových vulkánov (predchádzala mu vulkanická aktivita v severnom Maďarsku) na juhu Slovenska (stratovulkány Lysec a Čelovce), ktorá sa rozvinula a vytvorila stratovulkány Vtáčnik, Javorie, Poľana, Štiavnický stratovulkán a vulkány Kremnických vrchov, niektoré s pomerne zložitou stavbou[6].

Pred 13 mil. rokmi sa vulkanická aktivita postupne menila na z andezitovej cez dacitovú na ryolitovú (tzv. jastrabská formácia) a v posledných fázach až bazaltovú. Posledné výskyty sú ojedinelé erupcie bazaltových sopiek (vrch Kalvária v Banskej Štiavnici) a úplne posledná je sopka Putikov vŕšok pri Novej Bani.

Na východnom Slovensku sa začala sopečná činnosť aktivizovať z geologického hľadiska o niečo neskôr (pred 14,5 mil. rokov). Vytvorila reťaz stratovulkánov v Slanských a Vihorlatských vrchoch. Tieto mali relatívne jednoduchšiu stavbu ako stredoslovenské. Táto aktivita prechádza celým karpatským oblúkom cez Ukrajinu až do Rumunska (tu sú datované posledné prejavy na 20 000 rokov pred Kr.).

Na južnom Slovensku prebiehala vulkanická aktivita omnoho neskôr (6,4 mil. – 2 mil. rokov). Jej prejavy boli slabšie, sopečné formy boli rôzne maary, lávové prúdy, diatrémy. Juhoslovenské lávy sú tvorené prevažne bazaltami.

Významné sopky

Sopky na Zemi

Bližšie informácie v hlavnom článku: Zoznam sopiek
Mapa výskytu sopečnej činnosti na Zemi (červené čiary – divergentné okraje, červené bodky – výskyt sopečnej činnosti za posledný milión rokov).
Fumaroly na Etne – najvyššej činnej sopke v Európe.

Sopečná činnosť na iných objektoch slnečnej sústavy

Sopka Olympus Mons je najvyššia hora v slnečnej sústave

Na Mesiaci nie je doložená žiadna sopečná činnosť, ale našli sa pozostatky niektorých vulkanických foriem (maary, dómy).

Sopečná aktivita bola pozorovaná aj na iných planétach slnečnej sústavy. Povrch Venuše je z 90 % tvorený bazaltami, čo indikuje, že vulkanizmus hrá veľkú rolu pri tvarovaní jej povrchu. Aj keď to niektoré indície naznačujú, v súčasnosti nie je vulkanická aktivita na Venuši potvrdená.

Na povrchu Marsu bolo identifikovaných niekoľko vulkánov:

Tieto sopky sú vyhasnuté už milióny rokov, ale Európska sonda Mars Express našla dôkazy o sopečnej činnosti v nedávnej minulosti Marsu.

Najväčšiu vulkanickú aktivitu v Slnečnej sústave má Jupiterov mesiac Io. Celý je pokrytý sopkami s neutíchajúcimi erupciami kremitých hornín, oxidu siričitého a síry. Povrch Io sa neustále mení. Lávy na jeho povrchu majú najväčšiu teplotu v celej slnečnej sústave – dosahujú až 1 500 °C.

Najväčšia doteraz pozorovaná erupcia sa odohrala vo februári 1991 na inom mesiaci Jupitera – Europe. Tu má však sopečná aktivita inú podobu. Celá sa točí okolo vody – nazýva sa aj kryovulkanizmus. Tento proces je známy na viacerých mesiacoch vonkajších planét.

V roku 1989 Voyager 2 pozoroval ľadové sopky na Tritone – mesiaci Neptúnu. A v roku 1995 sonda Cassini-Huygens odfotografovala erupcie ľadu na Saturnovom mesiaci Enceladus. Vyvrhovaný materiál pozostáva z ľadu, tekutého dusíka, metánu a prachu. Sonda taktiež našla dôkaz o kryovulkanizme na ďalšom Saturnovom mesiaci – Titane, ktorého atmosféra pozostáva z metánu. Je predpoklad o výskyte kryovulkanizmu aj v Kuiperovom páse.

Pozri aj

Zoznamy

Zaujímavé lokalityupraviť | upraviť zdroj

Vulkanické fenoményupraviť | upraviť zdroj

Referencieupraviť | upraviť zdroj

  1. a b Reichwalder, P., Jablonský, J., 2003, Všeobecná geológia 1. Bratislava, Univerzita Komenského, 240 s.
  2. Cannón-Tapia, E., Walker, G.P.L., 2004, Global aspects of volcanism: the perspectives of plate tectonics and volcanic systems. Earth-Science Reviews, 66, s. 163 – 182
  3. a b c McCall, G.J.H., 2005, Volcanoes. in Selley, R.C., Cocks, L.R.M., Plimer, I.R. (Editori), Encyclopedia of Geology. Volume 5. Elsevier, Amsterdam, s. 260 – 267
  4. Grove, T.L., 2000, Origin of Magmas. in Sigurdsson, H. (Editor), Encyclopedia of Volcanoes. Academic Press, San Diego, s. 133 – 147
  5. a b Sigurdsson, H., 2000, Introduction. in Sigurdsson, H. (Editor), Encyclopedia of Volcanoes. Academic Press, San Diego, s. 1 – 13
  6. a b Konečný, V., Lexa, J., Šimon, L., Dublan, L., 2001, Neogénny vulkanizmus stredného Slovenska. Mineralia Slovaca, 33, 159 – 178 s.
  7. Sleep, N.H., 2006, Mantle plumes from top to bottom. Earth-Science Reviews, 77, s. 231 – 271
  8. Condie, K.C., 1989, Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford, 476 s.
  9. Dzurisin, D., Christiansen, R.L., Pierce, K.L. Yellowstone; restless volcanic giant online. USGS Open-File Report, 95-59, 1995. Dostupné online. (po anglicky)
  10. a b Kearey, P., Klepeis, K.A., Vine, J.F., 2009, Global Tectonics. 3rd Edition, Wiley-Blackwell, Chichester, 496 s.
  11. PETRÁNEK, J. On-line geologická encyklopedie - sopka online. geology.cz, 2007, cit. 2010-07-25. Dostupné online.
  12. Oppenheimer, C., 2004, Volcanoes. in Goudie, A.S. (Editor), Encyclopedia of Geomorphology. Routledge, London, s. 1092 – 1097
  13. Robinson, J.E., Eakins, B.W., 2006, Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge. Journal of Volcanology and Geothermal Research, 151, s. 309 – 317
  14. a b c d e Hovorka, D., 1990, Sopky. Veda, Bratislava, 147 s.

Ďalšia použitá literatúraupraviť | upraviť zdroj

  • Beazley, Mitchel (1988) Anatómia Zeme. Mladé letá, Bratislava, SK, 129 s.
  • Best, Myron (2002) Igneous and Metamorphic Petrology. Blackwell, UK, ISBN 0-86542-498-5, 832 s.

Iné projektyupraviť | upraviť zdroj

  • Spolupracuj na Commons Commons ponúka multimediálne súbory na tému sopka.

Externé odkazyupraviť | upraviť zdroj

  • volcanoes.usgs.gov – stránka USGS venovaná sopkám Spojených štátov (po anglicky)
Zdroj:
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Zdroj: Wikipedia.org - čítajte viac o Sopka

Áditja-L1
Áditja-L1
Ázerbájdžán
Úmrtí v roce 2022
Úmrtí v roce 2023
Číňané
Časová osa ruské invaze na Ukrajinu
Časová osa ruské invaze na Ukrajinu (2022)
Časová osa ruské invaze na Ukrajinu (2023)
Čeština
Černá Hora
Česká Wikipedie
Česko
Česko
Československo
Československo
Členské státy NATO
Ču Jou-sung
Říše Čching
Říše Ming
Římskokatolická církev
Šalomounovy ostrovy
Šiveluč
Špeciálne:Hľadanie/Q993
Špeciálne:StránkyZačínajúceNa/Q993
Štýrský Hradec
Šumperák
Žatec
Žatec
Židovská legie
Židovská národní rada
1. květen
1. září
1. září
10. září
11. duben
1303
1378
1378
14. duben
1418
1584
1585
1650
1673
1674
1697
17. duben
17. století
1707
18. září
18. září
1862
1863
1863
1873
1873
1884
19. duben
19. září
1912
1913
1922
1923
1938
1938
1942
1963
1973
1973
1977
1992
2. duben
2. září
2. září
20. duben
20. září
20. září
2003
2003
2008
2021
22. duben
23. duben
238
24. duben
24. listopad
26. duben
28. březen
28. duben
29. srpen
29. srpen
30. srpen
30. srpen
4. duben
5. květen
7. září
7. září
9. září
9. září
Až přijde kocour
Až přijde kocour
Aaron Spelling
Abel Posse
Achdut ha-avoda
Agrofert
Agrofert
Ahmad Jamal
Ainuové
Alija
Ali Bongo Ondimba
Ali Bongo Ondimba
Americká občanská válka
Americká občanská válka
Angélique du Coudray
Apple II
Ariane 5
Aun Schan Su Ťij
Austrálie
Autoritní kontrola
Azovstal
Bělorusko
Bělorusko
Balbinus
Balistická raketa
Bar Giora
Ben Ferencz
Ben Webster
Ben Webster
Bettie Page
Bibliografie dějin Českých zemí
Bitva o Madagaskar
Bitva o Mariupol
Bitva u Puebly
Blahoslavený
Boca Chica (Texas)
Bohuslav Korejs
Bolševici
Bouře Daniel
Bulava
Bzenecká lípa
Callisto
Chathamské ostrovy
Chrysococcyx
Chu Čeng-jen
Commons:Featured pictures/cs
Craig Breen
Dálný východ
Dana Němcová
David Ben Gurion
Deklarace nezávislosti Státu Izrael
Derna
Doněcké akademické oblastní činoherní divadlo
Donald Trump
Druhá světová válka
Dynastie Jižní Ming
Ekonomické důsledky ruské invaze na Ukrajinu (2022)
Elena Pampulovová
Emilia Galotti
Emmanuel Macron
Encyklopedie
Endel Tulving
Endel Tulving
Etnologie
Eurasie
Europa (měsíc)
Evropa
Evropská kosmická agentura
Evropská unie
Ferenc Szisz
Ferenc Szisz
Finsko
First-person shooter
Francie
Francouzská intervence v Mexiku
Francouzská národní knihovna
Gabon
Gabon
Galileovy měsíce
Ganymedes (měsíc)
Gejzír
Gemeinsame Normdatei
Georg Wilhelm Steller
Gianni Vattimo
Gianni Vattimo
Gotthold Ephraim Lessing
Guy Lafleur
H-IIA
H-IIA
Ha-Šomer
Hagana
Histadrut
Hlavní strana
Hnízdní parazitismus
Hnutí Svoboda (Slovinsko)
Holokaust
Holokaust
Hospodářský růst
Husitství
Ignacio Zaragoza
Indická kosmická agentura
Indická kosmická agentura
Indie
Indie
Indonésie
Ingenuity
Inkubace vejce
Internet Archive
Istanbulská univerzita
Itelmenové
Ivan Pop
Ivan Pop
Izrael
Józef Ulma, Wiktoria Ulma a jejich sedm dětí
Józef Ulma, Wiktoria Ulma a jejich sedm dětí
Jacques Gaillot
Jakov Milatović
Jakutsk
Jana Lorencová
Janez Janša
Jan Kostrhun
Jan Wieczorek
Jan Wieczorek
Japonsko
Japonsko
JAXA
JAXA
Jeruzalém
Jicchak Ben Cvi
John Stanley Marshall
John Stanley Marshall
Josef Vaněk (architekt)
Josep Fusté
Jude Slavie
Jupiter (planeta)
Jupiter Icy Moons Explorer
Juri
Kaligrafie
Kamčatka
Kamčatka (řeka)
Kamčatka (rozcestník)
Kamčatská oblast
Karaginský ostrov
Karel Pražák (podnikatel)
Karel Pražák (podnikatel)
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kazachstán
Kazachstán
Kidd Jordan
Kilometr
Kilometr čtvereční
Klaus Schulze
Klement VII. (vzdoropapež)
Klement VII. (vzdoropapež)
Ključevskaja
Komandorské ostrovy
Konfederované státy americké
Konfederované státy americké
Konflikt v Náhorním Karabachu (2023)
Konflikt v Náhorním Karabachu (2023)
Korjaci
Korjacká sopka
Korjacký autonomní okruh
Koronograf
Koronograf
Kostnický koncil
Kozáci
Kronocká sopka
Krymská válka
Kukačka nádherná
Kukačky
Kuo-c’-ťien
Kurilské jezero
Kurilské ostrovy
Kurilský příkop
Liška polární
Librační centrum
Librační centrum
Library of Congress Control Number
Libye
Lockheed F-117 Nighthawk
Losos čavyča
Losos gorbuša
Losos nerka
Lotyšsko
Lotyšsko
Málo dotčený taxon
Múte Bourup Egede
Madagaskar
MAFRA
MAFRA
Mahulena Čejková
Maia Sanduová
Mamlúci
Manuel Estiarte
Maorové
Mapaj
Mariupol
Maroko
Maroko
Marxismus
Mary Quantová
Meda Mládková
Medikán
Medvěd hnědý
Medvěd kamčatský
Metr
Mezikontinentální balistická raketa
Mezinárodní měnový fond
Mezinárodní svaz ochrany přírody
Michail Vasiljevič Staduchin
Milo Đukanović
Mircea Snegur
Mircea Snegur
Miroslav Hýll
Miroslav Hýll
Mistrovství světa v ragby 2023
Mittelbau-Dora
Mořský savec
Moldavsko
Mongolové
Moskevská oblast
Moskva
Mwai Kibaki
Myanmar
Náhorní Karabach
Náhorní Karabach
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní knihovna České republiky
Národní knihovna Izraele
Národní liga pro demokracii
Národní parlamentní knihovna Japonska
Nadace Wikimedia
Nanking
Nižněkamčatsk
Nigel Lawson
Nová Guinea
Nová Kaledonie
Nový Zéland
Nukleárie
Ochotské moře
Ordnungspolizei
Ordnungspolizei
Orel mořský
Orel skalní
Ovce sněžná
Přívalová povodeň
Příze
Padělek
Palestina v osmanském období
Pandemie covidu-19
Pandemie covidu-19 v Česku
Pavol Mešťan
Pečeť
Penžina
Perseverance
Petrohrad
Petropavlovsk-Kamčatskij
Petr Charvát
Petr Charvát
Petr I. Veliký
Plejtvák obrovský
Po'alej Cijon
Poddruh
Podněstří
Polar Satellite Launch Vehicle
Polar Satellite Launch Vehicle
Poloostrov
Polsko
Poltava
Pomoc:Ako vytvoriť nový článok
Pomoc:Vyhľadávanie
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Rusko
Portál:Sport
Povijnice batátová
Pravda (noviny)
Pravoslaví
Prezident Černé Hory
Prezident Izraele
Ptačí hnízdo
Pupienus
Q993
Q993#identifiers
Q993#identifiers|Editovat na Wikidatech
Rádio Impuls
Rádio Impuls
R-7 (balistická raketa)
Radim Uzel
Rentgenová astronomie
Rentgenová astronomie
Republika Arcach
Robert Fico
Robert Golob
Robert Kaliňák
Rodné jméno
Roger Whittaker
Roger Whittaker
Rosomák
Ruční pletení
Ruština
Ruská invaze na Ukrajinu
Ruská invaze na Ukrajinu (2022)
Ruské impérium
Rusko
Rusové
Sýrie
Sailor Moon
Santa Cruz (souostroví)
Sergio Gori
Severoatlantická aliance
Seznam prezidentů Spojených států amerických
Sibiř
Sionismus
Slovenska demokratska stranka
Slovensko
Slovinsko
Smuha MacDonaldova
Sobol
Sob polární
Sopečná erupce
Sopka
Sopky Kamčatky
Soubor:Вулкан Камбальный.jpg
Soubor:Apple-II.jpg
Soubor:Bettie Page-2.jpg
Soubor:Brown-bear-in-spring.jpg
Soubor:Chickamauga.jpg
Soubor:Chickamauga.jpg
Soubor:Der Berg Kamtschatka (aus Krascheninnikow, Opisanie Zemli Kamcatki).jpg
Soubor:Flag of Koryakia.svg
Soubor:Flag of Mars.svg
Soubor:Kamchatka Peninsula.jpg
Soubor:Kamchatka peninsula topo.jpg
Soubor:Koryaksky Sopka seen from the Avachinsky's Sopka - Kamchatka, Russian Federation - Summer 1993 03.jpg
Soubor:Krasheninnikov volcanoe.jpg
Soubor:Manel Estiarte (Diada de Sant Jordi 2009).jpg
Soubor:Map of Russia - Kamchatka Krai (2008-03).svg
Soubor:Narodni Divadlo, Estates Theater, Prague - 8638.jpg
Soubor:Persimmon and Three Yellow Tangerines.jpg
Soubor:Rainbow yarn for knitting, display in front of a needlework shop in Graz, Austria, GW23-100.jpg
Soubor:Sea Ice Imitates the Shoreline along the Kamchatka Peninsula.jpg
Soubor:Shining Bronze-Cuckoo Dayboro.JPG
Soubor:Sumperak - kresba.jpg
Soubor:Wiki letter w.svg
Soubor:Yitzhak Ben-Zvi.jpg
SpaceX
SpaceX South Texas launch site
Speciální:Kategorie
Speciální:Map/6/57/160/cs
Speciální:Nové stránky
Speciální:Statistika
Spojené království
Spojené království
Spojené státy americké
Střízlíkovec chathamský
Střízlíkovec novokaledonský
Střízlíkovec novozélandský
Starship (SpaceX)
Starship Test Flight
Stavovské divadlo
Světová ekonomika
Světové dědictví
Světové dědictví
Světové dědictví (Česko)
Světové dědictví (Česko)
Synthesia
Synthesia
Třída T 47
Texas
Tichý oceán
Tichomoří
Tiskař
Tobol Kostanaj FK
Tobol Kostanaj FK
Topol-M
Turecko
Ukrajina
UNESCO
UNESCO
V-2
Vanuatu
Vatikán
Vichistická Francie
Viktor Zvjahincev
Virtual International Authority File
Vitus Bering
Vláda Černé Hory
Vláda Petra Fialy
Vláda Petra Fialy
Vladimír Zápotocký
Vladimir Kara-Murza
Vladimir Vasiljevič Atlasov
Vladlen Tatarskij
Vlajka Korjackého autonomního okruhu
Vlasta Prachatická
Vojenská junta
Vojenský převrat v Myanmaru 2021
Volby do Knesetu 1949
Volby prezidenta Francie 2022
Vratislav Effenberger
Vydra říční
Vzdušný prostor
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikifunctions:Main Page
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipédia:Žiadané články
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2022
Wikipedie:Článek týdne/2023
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2022
Wikipedie:Obrázek týdne/2023
Wikipedie:Pahýl
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/duben
Wikipedie:Vybraná výročí dne/květen
Wikipedie:Vybraná výročí dne/září
Wikipedie:Vybraná výročí dne/září
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2022
Wikipedie:Zajímavosti/2023
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Wiktionary
Wolfenstein 3D
WorldCat
XRISM
XRISM
Zatčení
Zdeněk Fiala
Zdeněk Návrat
Zdeněk Návrat
Zdeněk Ziegler
Zeměpisné souřadnice
Zemětřesení v Maroku 2023
Zemětřesení v Maroku 2023
Zobák




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk