Stereographic projection - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Stereographic projection
 ...
3D illustration of a stereographic projection from the north pole onto a plane below the sphere

In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the pole or center of projection), onto a plane (the projection plane) perpendicular to the diameter through the point. It is a smooth, bijective function from the entire sphere except the center of projection to the entire plane. It maps circles on the sphere to circles or lines on the plane, and is conformal, meaning that it preserves angles at which curves meet and thus locally approximately preserves shapes. It is neither isometric (distance preserving) nor equiareal (area preserving).[1]

The stereographic projection gives a way to represent a sphere by a plane. The metric induced by the inverse stereographic projection from the plane to the sphere defines a geodesic distance between points in the plane equal to the spherical distance between the spherical points they represent. A two-dimensional coordinate system on the stereographic plane is an alternative setting for spherical analytic geometry instead of spherical polar coordinates or three-dimensional cartesian coordinates. This is the spherical analog of the Poincaré disk model of the hyperbolic plane.

Intuitively, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. Because the sphere and the plane appear in many areas of mathematics and its applications, so does the stereographic projection; it finds use in diverse fields including complex analysis, cartography, geology, and photography. Sometimes stereographic computations are done graphically using a special kind of graph paper called a stereographic net, shortened to stereonet, or Wulff net.

History

Illustration by Rubens for "Opticorum libri sex philosophis juxta ac mathematicis utiles", by François d'Aguilon. It demonstrates the principle of a general perspective projection, of which the stereographic projection is a special case.

The origin of the stereographic projection is not known, but it is believed to have been discovered by Ancient Greek astronomers and used for projecting the celestial sphere to the plane so that the motions of stars and planets could be analyzed using plane geometry. Its earliest extant description is found in Ptolemy's Planisphere (2nd century AD), but it was ambiguously attributed to Hipparchus (2nd century BC) by Synesius (c. 400 AD),[2] and Apollonius's Conics (c. 200 BC) contains a theorem which is crucial in proving the property that the stereographic projection maps circles to circles. Hipparchus, Apollonius, Archimedes, and even Eudoxus (4th century BC) have sometimes been speculatively credited with inventing or knowing of the stereographic projection,[3] but some experts consider these attributions unjustified.[2] Ptolemy refers to the use of the stereographic projection in a "horoscopic instrument", perhaps the anaphoric clock [fr; it] described by Vitruvius (1st century BC).[4][5]

By the time of Theon of Alexandria (4th century), the planisphere had been combined with a dioptra to form the planispheric astrolabe ("star taker"),[3] a capable portable device which could be used for measuring star positions and performing a wide variety of astronomical calculations. The astrolabe was in continuous use by Byzantine astronomers, and was significantly further developed by medieval Islamic astronomers. It was transmitted to Western Europe during the 11th–12th century, with Arabic texts translated into Latin.

In the 16th and 17th century, the equatorial aspect of the stereographic projection was commonly used for maps of the Eastern and Western Hemispheres. It is believed that already the map created in 1507 by Gualterius Lud[6] was in stereographic projection, as were later the maps of Jean Roze (1542), Rumold Mercator (1595), and many others.[7] In star charts, even this equatorial aspect had been utilised already by the ancient astronomers like Ptolemy.[8]

François d'Aguilon gave the stereographic projection its current name in his 1613 work Opticorum libri sex philosophis juxta ac mathematicis utiles (Six Books of Optics, useful for philosophers and mathematicians alike).[9]

In the late 16th century, Thomas Harriot proved that the stereographic projection is conformal; however, this proof was never published and sat among his papers in a box for more than three centuries.[10] In 1695, Edmond Halley, motivated by his interest in star charts, was the first to publish a proof.[11] He used the recently established tools of calculus, invented by his friend Isaac Newton.

Definition

First formulation

Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section

The unit sphere S2 in three-dimensional space R3 is the set of points (x, y, z) such that x2 + y2 + z2 = 1. Let N = (0, 0, 1) be the "north pole", and let M be the rest of the sphere. The plane z = 0 runs through the center of the sphere; the "equator" is the intersection of the sphere with this plane.

For any point P on M, there is a unique line through N and P, and this line intersects the plane z = 0 in exactly one point P, known as the stereographic projection of P onto the plane.

In Cartesian coordinates (x, y, z) on the sphere and (X, Y) on the plane, the projection and its inverse are given by the formulas

In spherical coordinates (φ, θ) on the sphere (with φ the zenith angle, 0 ≤ φ ≤ π, and θ the azimuth, 0 ≤ θ ≤ 2π) and polar coordinates (R, Θ) on the plane, the projection and its inverse are

Here, φ is understood to have value π when R = 0. Also, there are many ways to rewrite these formulas using trigonometric identities. In cylindrical coordinates (r, θ, z) on the sphere and polar coordinates (R, Θ) on the plane, the projection and its inverse are

Other conventions

Stereographic projection of the unit sphere from the north pole onto the plane z = −1, shown here in cross section

Some authors[12] define stereographic projection from the north pole (0, 0, 1) onto the plane z = −1, which is tangent to the unit sphere at the south pole (0, 0, −1). This can be described as a composition of a projection onto the equatorial plane described above, and a homothety from it to the polar plane. The homothety scales the image by a factor of 2 (a ratio of a diameter to a radius of the sphere), hence the values X and Y produced by this projection are exactly twice those produced by the equatorial projection described in the preceding section. For example, this projection sends the equator to the circle of radius 2 centered at the origin. While the equatorial projection produces no infinitesimal area distortion along the equator, this pole-tangent projection instead produces no infinitesimal area distortion at the south pole.

Other authors[13] use a sphere of radius 1/2 and the plane z = −1/2. In this case the formulae become







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk