Wallpaper group - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Wallpaper group
 ...
Example of an Egyptian design with wallpaper group p4m

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

What this page calls pattern

Image 1.
Examples of repetitive surfaces
on a Pythagorean tiling.
Image 2.
The  minimal  area  of any of possible repetitive surfaces
  by  disregarding  the  colors
Such  Pythagorean tilings  can  be  seen  as  wallpapers  because  they are periodic.

Any periodic tiling can be seen as a wallpaper. More particularly, we can consider as a wallpaper a tiling by identical tiles edge‑to‑edge, necessarily periodic, and conceive from it a wallpaper by decorating in the same manner every tiling element, and eventually erase partly or entirely the boundaries between these tiles. Conversely, from every wallpaper we can construct such a tiling by identical tiles edge‑to‑edge, which bear each identical ornaments, the identical outlines of these tiles being not necessarily visible on the original wallpaper. Such repeated boundaries delineate a repetitive surface added here in dashed lines.

Such pseudo‑tilings connected to a given wallpaper are in infinite number. For example image 1 shows two models of repetitive squares in two different positions, which have Another repetitive square has an We could indefinitely conceive such repetitive squares larger and larger. An infinity of shapes of repetitive zones are possible for this Pythagorean tiling, in an infinity of positions on this wallpaper. For example in red on the bottom right‑hand corner of image 1, we could glide its repetitive parallelogram in one or another position. In common on the first two images: a repetitive square concentric with each small square tile, their common center being a point symmetry of the wallpaper.

Between identical tiles edge‑to‑edge, an edge is not necessarily a segment of a straight line. On the top left‑hand corner of image 3, point  is a vertex of a repetitive pseudo‑rhombus with thick stripes on its whole surface, called pseudo‑rhombus because of a concentric repetitive rhombus constructed from it by taking out a bit of surface somewhere to append it elsewhere, and keep the area unchanged. By the same process on image 4, a repetitive regular hexagon filled with vertical stripes is constructed from a rhombic repetitive zone Conversely, from elementary geometric tiles edge‑to‑edge, an artist like M. C. Escher created attractive surfaces many times repeated. On image 2,  the minimum area of a repetitive surface by disregarding colors, each repetitive zone in dashed lines consisting of five pieces in a certain arrangement, to be either a square or a hexagon, like in a proof of the Pythagorean theorem.

In the present article, a pattern is a repetitive parallelogram of minimal area in a determined position on the wallpaper. Image 1 shows two parallelogram‑shaped patterns — a square is a particular parallelogram —. Image 3 shows rhombic patterns — a rhombus is a particular parallelogram —.

On this page, all repetitive patterns (of minimal area) are constructed from two translations that generate the group of all translations under which the wallpaper is invariant. With the circle shaped symbol ⵔ of function composition, a pair like or  generates the group of all translations that transform the Pythagorean tiling into itself.

Image 3.
In one or the other orientation, every rhombus
in dark dashed lines instances a same pattern,
because the rotation of center and ‑120° angle
leaves the wallpaper unchanged.
Image 4.
The same wallpaper as previously by disregarding its colors.
Otherwise if the colors are considered, there is no longer
a center of rotation that leaves the wallpaper unchanged,
either at point  or  or H.
Is  considered  as  the  same  pattern  its  image
under an isometry keeping the wallpaper unchanged.

Possible groups linked to a pattern

A wallpaper remains on the whole unchanged under certain isometries, starting with certain translations that confer on the wallpaper a repetitive nature. One of the reasons to be unchanged under certain translations is that it covers the whole plane. No mathematical object in our minds is stuck onto a motionless wall! On the contrary an observer or his eye is motionless in front of a transformation, which glides or rotates or flips a wallpaper, eventually could distort it, but that would be out of our subject.

If an isometry leaves unchanged a given wallpaper, then the inverse isometry keeps it also unchanged, like translation on image 1, 3 or 4, or a ± 120° rotation around a point like S on image 3 or 4. If they have both this property to leave unchanged a wallpaper, two isometries composed in one or the other order have then this same property to leave unchanged the wallpaper. To be exhaustive about the concepts of group and subgroups under the function composition, represented by the circle shaped symbol ⵔ, here is a traditional truism in mathematics: everything remains itself under the identity transformation. This identity function can be called translation of zero vector or rotation of 360°.

A glide can be represented by one or several arrows if parallel and of same length and same sense, in same way a wallpaper can be represented either by a few patterns or by only one pattern, considered as a pseudo‑tile imagined repeated edge‑to‑edge with an infinite number of replicas. Image 3 shows two patterns with two different contents, and the one in dark dashed lines or one of its images under represents the same wallpaper on the following image 4, by disregarding the colors. Certainly a color is perceived subjectively whereas a wallpaper is an ideal object, however any color can be seen as a label that characterizes certain surfaces, we might think of a hexadecimal code of color as a label specific to certain zones. It may be added that a well‑known theorem deals with colors.

Groups are registered in the catalog by examining properties of a parallelogram, edge‑to‑edge with its replicas. For example its diagonals intersect at their common midpoints, center and symmetry point of any parallelogram, not necessarily symmetry point of its content. Other example, the midpoint of a full side shared by two patterns is the center of a new repetitive parallelogram formed by the two together, center which is not necessarily symmetry point of the content of this double parallelogram. Other possible symmetry point, two patterns symmetric one to the other with respect to their common vertex form together a new repetitive surface, the center of which is not necessarily symmetry point of its content.

Certain rotational symmetries are possible only for certain shapes of pattern. For example on image 2, a Pythagorean tiling is sometimes called pinwheel tilings because of its rotational symmetry of 90 degrees about the center of a tile, either small or large, or about the center of any replica of tile, of course. Also when two equilateral triangles form edge‑to‑edge a rhombic pattern, like on image 4 or 5 (future image 5), a rotational symmetry of 120 degrees about a vertex of a 120° angle, formed by two sides of pattern, is not always a symmetry point of the content of the regular hexagon formed by three patterns together sharing a vertex, because it does not always contain the same motif.

First examples of groups

The simplest wallpaper group, Group p1, applies when there is no symmetry other than the fact that a pattern repeats over regular intervals in two dimensions, as shown in the section on p1 below.

The following examples are patterns with more forms of symmetry:

Examples A and B have the same wallpaper group; it is called p4m in the IUCr notation and *442 in the orbifold notation. Example C has a different wallpaper group, called p4g or 4*2 . The fact that A and B have the same wallpaper group means that they have the same symmetries, regardless of details of the designs, whereas C has a different set of symmetries despite any superficial similarities.

The number of symmetry groups depends on the number of dimensions in the patterns. Wallpaper groups apply to the two-dimensional case, intermediate in complexity between the simpler frieze groups and the three-dimensional space groups. Subtle differences may place similar patterns in different groups, while patterns that are very different in style, color, scale or orientation may belong to the same group.

A proof that there are only 17 distinct groups of such planar symmetries was first carried out by Evgraf Fedorov in 1891[1] and then derived independently by George Pólya in 1924.[2] The proof that the list of wallpaper groups is complete only came after the much harder case of space groups had been done. The seventeen possible wallpaper groups are listed below in § The seventeen groups.

Symmetries of patterns

A symmetry of a pattern is, loosely speaking, a way of transforming the pattern so that it looks exactly the same after the transformation. For example, translational symmetry is present when the pattern can be translated (in other words, shifted) some finite distance and appear unchanged. Think of shifting a set of vertical stripes horizontally by one stripe. The pattern is unchanged. Strictly speaking, a true symmetry only exists in patterns that repeat exactly and continue indefinitely. A set of only, say, five stripes does not have translational symmetry—when shifted, the stripe on one end "disappears" and a new stripe is "added" at the other end. In practice, however, classification is applied to finite patterns, and small imperfections may be ignored.

The types of transformations that are relevant here are called Euclidean plane isometries. For example:

  • If one shifts example B one unit to the right, so that each square covers the square that was originally adjacent to it, then the resulting pattern is exactly the same as the starting pattern. This type of symmetry is called a translation. Examples A and C are similar, except that the smallest possible shifts are in diagonal directions.
  • If one turns example B clockwise by 90°, around the centre of one of the squares, again one obtains exactly the same pattern. This is called a rotation. Examples A and C also have 90° rotations, although it requires a little more ingenuity to find the correct centre of rotation for C.
  • One can also flip example B across a horizontal axis that runs across the middle of the image. This is called a reflection. Example B also has reflections across a vertical axis, and across two diagonal axes. The same can be said for A.

However, example C is different. It only has reflections in horizontal and vertical directions, not across diagonal axes. If one flips across a diagonal line, one does not get the same pattern back, but the original pattern shifted across by a certain distance. This is part of the reason that the wallpaper group of A and B is different from the wallpaper group of C.

Another transformation is "Glide", a combination of reflection and translation parallel to the line of reflection.

A glide reflection will map a set of left and right footprints into each other

Formal definition and discussion

Mathematically, a wallpaper group or plane crystallographic group is a type of topologically discrete group of isometries of the Euclidean plane that contains two linearly independent translations.

Two such isometry groups are of the same type (of the same wallpaper group) if they are the same up to an affine transformation of the plane. Thus e.g. a translation of the plane (hence a translation of the mirrors and centres of rotation) does not affect the wallpaper group. The same applies for a change of angle between translation vectors, provided that it does not add or remove any symmetry (this is only the case if there are no mirrors and no glide reflections, and rotational symmetry is at most of order 2).

Unlike in the three-dimensional case, one can equivalently restrict the affine transformations to those that preserve orientation.

It follows from the Bieberbach theorem that all wallpaper groups are different even as abstract groups (as opposed to e.g. frieze groups, of which two are isomorphic with Z).

2D patterns with double translational symmetry can be categorized according to their symmetry group type.

Isometries of the Euclidean plane

Isometries of the Euclidean plane fall into four categories (see the article Euclidean plane isometry for more information).

  • Translations, denoted by Tv, where v is a vector in R2. This has the effect of shifting the plane applying displacement vector v.
  • Rotations, denoted by Rc,θ, where c is a point in the plane (the centre of rotation), and θ is the angle of rotation.
  • Reflections, or mirror isometries, denoted by FL, where L is a line in R2. (F is for "flip"). This has the effect of reflecting the plane in the line L, called the reflection axis or the associated mirror.
  • Glide reflections, denoted by GL,d, where L is a line in R2 and d is a distance. This is a combination of a reflection in the line L and a translation along L by a distance d.

The independent translations condition

The condition on linearly independent translations means that there exist linearly independent vectors v and w (in R2) such that the group contains both Tv and Tw.

The purpose of this condition is to distinguish wallpaper groups from frieze groups, which possess a translation but not two linearly independent ones, and from two-dimensional discrete point groups, which have no translations at all. In other words, wallpaper groups represent patterns that repeat themselves in two distinct directions, in contrast to frieze groups, which only repeat along a single axis.

(It is possible to generalise this situation. One could for example study discrete groups of isometries of Rn with m linearly independent translations, where m is any integer in the range 0 ≤ m ≤ n.)

The discreteness condition

The discreteness condition means that there is some positive real number ε, such that for every translation Tv in the group, the vector v has length at least ε (except of course in the case that v is the zero vector, but the independent translations condition prevents this, since any set that contains the zero vector is linearly dependent by definition and thus disallowed).

The purpose of this condition is to ensure that the group has a compact fundamental domain, or in other words, a "cell" of nonzero, finite area, which is repeated through the plane. Without this condition, one might have for example a group containing the translation Tx for every rational number x, which would not correspond to any reasonable wallpaper pattern.

One important and nontrivial consequence of the discreteness condition in combination with the independent translations condition is that the group can only contain rotations of order 2, 3, 4, or 6; that is, every rotation in the group must be a rotation by 180°, 120°, 90°, or 60°. This fact is known as the crystallographic restriction theorem,[3] and can be generalised to higher-dimensional cases.

Notations for wallpaper groups

Crystallographic notation

Crystallography has 230 space groups to distinguish, far more than the 17 wallpaper groups, but many of the symmetries in the groups are the same. Thus one can use a similar notation for both kinds of groups, that of Carl Hermann and Charles-Victor Mauguin. An example of a full wallpaper name in Hermann-Mauguin style (also called IUCr notation) is p31m, with four letters or digits; more usual is a shortened name like cmm or pg.

For wallpaper groups the full notation begins with either p or c, for a primitive cell or a face-centred cell; these are explained below. This is followed by a digit, n, indicating the highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold. The next two symbols indicate symmetries relative to one translation axis of the pattern, referred to as the "main" one; if there is a mirror perpendicular to a translation axis that is the main one (or if there are two, one of them). The symbols are either m, g, or 1, for mirror, glide reflection, or none. The axis of the mirror or glide reflection is perpendicular to the main axis for the first letter, and either parallel or tilted 180°/n (when n > 2) for the second letter. Many groups include other symmetries implied by the given ones. The short notation drops digits or an m that can be deduced, so long as that leaves no confusion with another group.

A primitive cell is a minimal region repeated by lattice translations. All but two wallpaper symmetry groups are described with respect to primitive cell axes, a coordinate basis using the translation vectors of the lattice. In the remaining two cases symmetry description is with respect to centred cells that are larger than the primitive cell, and hence have internal repetition; the directions of their sides is different from those of the translation vectors spanning a primitive cell. Hermann-Mauguin notation for crystal space groups uses additional cell types.

Examples
  • p2 (p2): Primitive cell, 2-fold rotation symmetry, no mirrors or glide reflections.
  • p4gm (p4gm): Primitive cell, 4-fold rotation, glide reflection perpendicular to main axis, mirror axis at 45°.
  • c2mm (c2mm): Centred cell, 2-fold rotation, mirror axes both perpendicular and parallel to main axis.
  • p31m (p31m): Primitive cell, 3-fold rotation, mirror axis at 60°.

Here are all the names that differ in short and full notation.

Crystallographic short and full names
Short pm pg cm pmm pmg pgg cmm p4m p4g p6m
Full p1m1 p1g1 c1m1 p2mm p2mg p2gg c2mm p4mm p4gm p6mm

The remaining names are p1, p2, p3, p3m1, p31m, p4, and p6.

Orbifold notation

Orbifold notation for wallpaper groups, advocated by John Horton Conway (Conway, 1992) (Conway 2008), is based not on crystallography, but on topology. One can fold the infinite periodic tiling of the plane into its essence, an orbifold, then describe that with a few symbols.

  • A digit, n, indicates a centre of n-fold rotation corresponding to a cone point on the orbifold. By the crystallographic restriction theorem, n must be 2, 3, 4, or 6.
  • An asterisk, *, indicates a mirror symmetry corresponding to a boundary of the orbifold. It interacts with the digits as follows:
    1. Digits before * denote centres of pure rotation (cyclic).
    2. Digits after * denote centres of rotation with mirrors through them, corresponding to "corners" on the boundary of the orbifold (dihedral).
  • A cross, ×, occurs when a glide reflection is present and indicates a crosscap on the orbifold. Pure mirrors combine with lattice translation to produce glides, but those are already accounted for so need no notation.
  • The "no symmetry" symbol, o, stands alone, and indicates there are only lattice translations with no other symmetry. The orbifold with this symbol is a torus; in general the symbol o denotes a handle on the orbifold.

The group denoted in crystallographic notation by cmm will, in Conway's notation, be 2*22. The 2 before the * says there is a 2-fold rotation centre with no mirror through it. The * itself says there is a mirror. The first 2 after the * says there is a 2-fold rotation centre on a mirror. The final 2 says there is an independent second 2-fold rotation centre on a mirror, one that is not a duplicate of the first one under symmetries.

The group denoted by pgg will be 22×. There are two pure 2-fold rotation centres, and a glide reflection axis. Contrast this with pmg, Conway 22*, where crystallographic notation mentions a glide, but one that is implicit in the other symmetries of the orbifold.

Coxeter's bracket notation is also included, based on reflectional Coxeter groups, and modified with plus superscripts accounting for rotations, improper rotations and translations.

Conway, Coxeter and crystallographic correspondence
Conway o ×× ** 632 *632
Coxeter + Zdroj:https://en.wikipedia.org?pojem=Wallpaper_group
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk