Archimedova axióma - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Archimedova axióma

Archimedova axióma[1][2][3][4][5](iné názvy: Eudoxova-Archimedova axióma[1][6],Eudoxova axióma[3][5][6], Archimedov výrok[7], Archimedov princíp, Archimedova vlastnosť [4][8], axióma merateľnosti[9], Archimedova veta[10][11]) bola pôvodne nasledujúca veta (axióma): Ak máme dve úsečky, z ktorých jedna je kratšia (X) a jedna dlhšia (Y), tak ak nanesieme (narysujeme) úsečku X dostatočne veľakrát za sebou, vždy dostaneme úsečku, ktorá je dlhšia než úsečka Y . Dnes sa táto veta často aplikuje aj na plochu, objem či všeobecne na usporiadané aritmetické a algebrické štruktúry (napr. na množiny prirodzených, celých, racionálnych a reálnych čísiel); v takom prípade znie všeobecne takto: Ak máme ľubovoľné dve (kladné) hodnoty (nejakej veličiny [pozn 1]), z ktorých jedna je menšia (A) a druhá väčšia (B), tak vždy platí A.n>B, pričom n je nejaké (aspoň jedno) prirodzené číslo . Táto veta platí (t. j. Archimedova axióma je splnená) napríklad pre množinu reálnych čísiel. Vlastnosť (niečoho) spĺňať Archimedovu axiómu, sa nazýva archimedovská vlastnosť (Archimedova vlastnosť) alebo archimedovská usporiadanosť; algebrická štruktúra (napr. grupa, pole) spĺňajúca Archimedovu axiómu sa teda volá archimedovská alebo archimedovsky usporiadaná.[1][5][12][3][13][14][15]

Dá sa ukázať, že veta 2 vyplýva z nasledujúcej vety a je s ňou ekvivalentná: Množina všetkých prirodzených čísiel je zhora neohraničená resp. inak povedané (tu ako príklad pre množinu reálnych čísiel): Ku každému reálnemu číslu C existuje nejaké (aspoň jedno) prirodzené číslo n, ktoré je väčšie ako C . Aj táto veta sa niekedy takisto zvykne označovať ako Archimedova axióma (resp. vyššie uvedené synonymá), pričom ale v niektorých textoch sú použité rôzne názvy pre vetu 2 (či 1) a vetu 3 (napr. Archimedov princíp pre vetu 2 a Archimedova vlastnosť (reálnych čísiel) pre vetu 3; Archimedova axióma pre vetu 1 a Archimedova veta pre vetu 3; Archimedova vlastnosť (reálnych čísiel) pre vetu 2 a Eudoxova-Archimedova pre vetu 3). [16][15][8][13][2][10]

Z Archimedovej axiómy (t. j. z vety 2 či 3, ale aj 1) vyplýva, že v danej algebrickej štruktúre nie je žiaden nekonečne veľký či nekonečne malý prvok (t.j. napr. pre množinu reálnych čísiel platí, že neexistujú nekonečne malé alebo nekonečne veľké reálne čísla). [17][18][6]

Existuje aj Archimedova axióma v multiplikatívnom tvare (t.j. namiesto A.n=A+A+A... je An=A.A.A…). K tomu pozri nižšie. [4]

Archimedova axióma v multiplikatívnom tvare [19]19">upraviť | upraviť zdroj

Vieme, že za predpokladu platí , a tak ďalej. Z toho je intuitívne zrejmé, že veľmi vysoké mocniny čísla sú veľmi malé. To znamená, že pri ľubovoľne malom kladnom čísle pre dosť veľké celé číslo platí . Táto významná skutočnosť sa nazýva Archimedová vlastnosť a formálne ju zapisujeme nasledujúcou vetou: Nech , nech . Potom existuje také prirodzené číslo , že .

Dôkazupraviť | upraviť zdroj

Na dokázanie Archimedovej vlastnosti musíme najprv dokázať nasledujúcu vetu:

Nech . Potom postupnosť je sumovateľná a platí: .

Dôkaz je nasledovný:

V (Z) položme pre každé celé , z čoho vyplýva, že postupnosť je sumovateľná. Označme jej súčet s. Potom platí .

Urobme teraz substitúciu , pričom , . Keďže platí

takže dostaneme . Teda , z čoho ihneď vyplýva

.

Keď sa teraz vrátime k dôkazu archimedovej postupnosti, tak podľa predchádzajúcej vety je číslo súčtom postupnosti . Preto k ľubovolnému číslo existuje také celé číslo , že

. Ak označíme , tak zrejme . Teda k takto zvolenému existuje celé číslo , pre ktoré platí . To znamená, že existuje také celé , že


Zdroj: Wikipedia.org - čítajte viac o Archimedova axióma





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk