A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Inzulín je peptidový hormón produkovaný Langerhansovými ostrovčekmi podžalúdkovej žľazy (pankreasu). Umožňuje, aby sa glukóza získaná z potravy dostala do vnútra bunky a tam bola premenená na energiu.
Názov pochádza z latinského slova insula znamenajúceho „ostrov“.
Účinky
V pečeni zvyšuje vychytávanie glukózy z krvi a podporuje tvorbu zásobného glykogénu; blokuje ketogenézu (= vznik ketoacidózy, t. j. vnútorného rozvratu metabolizmu). V svaloch aktivuje systémy transportu glukózy do myocytov a tým zabezpečuje dodávku primárnej energie svalom. V tukovom tkanive inzulín zvyšuje tvorbu tukov (preto sa pri cukrovke II. typu alebo pri zvýšenej spotrebe inzulínu priberá).
Celkovo teda inzulín zvyšuje v pečeni, svaloch a v tukovom väzive vychytávanie glukózy z krvi a jej ukladanie vo forme zásobného glykogénu (v pečeni a svaloch). Zastavuje využitie tukov na tvorbu energie tým, že zabraňuje uvoľňovaniu glukagónu. S výnimkou diabetes mellitus a metabolického syndrómu inzulín zabezpečuje v tele stabilnú koncentráciu glukózy v krvi. Keď úroveň glukózy v krvi klesne pod určitú hladinu, telo začne využívať ako zdroj energie glykogenolýzu, ktorá rozkladá glykogén uložený v pečeni a svaloch na glukózu, ktorá je následne využitá na tvorbu ATP. Inzulín má anabolický efekt a uplatňuje sa aj v metabolizme minerálov.
Štruktúra
Štruktúra inzulínu sa medzi živočíšnymi druhmi líši. Inzulín zo živočíšnych zdrojov sa preto líši v stupni schopnosti ovplyvňovať metabolizmus glukózy v ľudskom organizme. Najbližšie k ľudskej verzii má inzulín ošípaných. Ľudský inzulín je proteínový hormón skladajúci sa z dvoch polypeptidických reťazcov (A,B), ktoré sú spojené disulfidickými mostíkmi a ktoré majú dohromady 51 aminokyselín – reťazec A obsahuje 21 a reťazec B 30 aminokyselín.
U stavovcov je sekvencia aminokyselín inzulínu extrémne zakonzervovaná. Hovädzí inzulín sa odlišuje od toho ľudského len v troch a u ošípaných len v jednej aminokyseline. Aj niektoré druhy rýb majú inzulín natoľko podobný ľudskému, že je u človeka klinicky efektívny. Inzulín u niektorých bezstavovcov je čiastočne podobný ľudskému a má rovnaké fyziologické účinky.
Inzulín je produkovaný a ukladaný v tele ako hexamér (jednotka obsahujúca 6 molekúl inzulínu), zatiaľ čo účinná forma je monomér. Hexamér je neaktívna forma s dlhodobou stabilitou, ktorá slúži na ochranu vysoko reaktívneho inzulínu, ak nie je potrebný. To, že inzulín je rýchlo reagujúca látka, v praxi znamená, že injekcia inzulínu nemusí byť podaná hodiny pred jedlom, čo dáva diabetikom väčšiu flexibilitu pri ich dennom liečebnom pláne.
Vznik inzulínu
- 1. fáza: vzniká pre-proinzulín v ribozómoch Langerhansových ostrovčekov
- 2. fáza: v endoplazmatickom retikule sa pre-proinzulín mení na proinzulín, ktorý je tvorený reťazcami A a B spojenými C-peptidom (v angl. connection peptid)
- 3. fáza: proinzulín putuje do sekrečných granúl B-buniek, kde je v Golgiho aparáte rozštiepený na C-peptid a inzulín
- 4. fáza: inzulín sa zrazí s iónmi zinku (kvôli svojej nižšej rozpustnosti) a je skladovaný do času potreby v sekrečných granulách B-buniek
Vylučovanie inzulínu
Inzulín sa spolu s C-peptidom (v granuliach) procesom exocytózy dostáva cez bunkovú membránu von z bunky. Tento proces je stimulovaný vzostupom ATP, ktorý je stimulovaný vzostupom glykémie (hladiny glukózy v krvi) a následne vzostupom vnútrobunkového katiónu Ca2+. Vylučovanie inzulínu je riadené predovšetkým koncentráciou glukózy v krvi, ale i inými hormónmi (napr. adrenalínom). Glukóza a ostatné živiny vstrebané z jedla sú primárnymi stimulátormi vylučovania inzulínu.
Celková denná dávka inzulínu u nediabetika je cca 20 – 40 IU. Z toho polovica pripadá na bazálne vylučovanie (= inzulín produkovaný nezávisle od príjmu potravy) a polovica na bolusové vylučovanie (= vylučovanie inzulínu stimulované glukózou).
Príjem inzulínu bunkou
Na každej bunke, ktorá prijíma inzulín sa nachádzajú inzulínové receptory. Na ne sa môže „prichytiť“ len molekula inzulínu a tým následne umožní vďaka glukózovým transportérom (GLUT 4) vstup glukózy do bunky. Najväčší počet týchto receptorov obsahujú bunky svalov (myocyty), pečene (hepatocyty) a tukového tkaniva (adipocyty).
Inzulín ako liek
Inzulín je lekársky využívaný na liečbu rôznych podôb cukrovky. Pacienti s diabetes mellitus I. typu sú životne závislí na podávaní inzulínu (väčšinou injekčne), pretože tento hormón ich telo neprodukuje. Pacienti s diabetes mellitus II. typu sú často voči inzulínu odolní (ich tkanivá slabo reagujú na jeho normálnu hladinu) a trpia tak vlastne jeho relatívnym nedostatkom. Až 40 % pacientov s týmto typom môže nakoniec vyžadovať inzulín, ak iné lieky pri kontrole hladiny glukózy v krvi nemajú dostatočný účinok.
Choroby
- hyperinzulinizmus
- hypoinzulinizmus
- cukrovka – diabetes mellitus
Iné projekty
Commons ponúka multimediálne súbory na tému Inzulín
Zdroj
- Tento článok je čiastočný alebo úplný preklad článku Insulin na anglickej Wikipédii.
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Antropológia
Aplikované vedy
Bibliometria
Dejiny vedy
Encyklopédie
Filozofia vedy
Forenzné vedy
Humanitné vedy
Knižničná veda
Kryogenika
Kryptológia
Kulturológia
Literárna veda
Medzidisciplinárne oblasti
Metódy kvantitatívnej analýzy
Metavedy
Metodika
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk