Ganymedes (měsíc) - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Ganymedes (měsíc)
 ...
Ganymedes
Ganymed v pravých barvách na fotografii pořízené sondou Galileo
Ganymed v pravých barvách na fotografii pořízené sondou Galileo
Identifikátory
Typměsíc
OznačeníJupiter III
Objeveno
Datum13. ledna 1610
(Galileo)
ObjevitelGalileo Galilei
Simon Marius
Elementy dráhy
(Ekvinokcium J2000,0)
Velká poloosa1 070 400[1] km
0,007 155 au
Výstřednost0,001 3[1]
Periapsida1 069 200 km (0,007 147 AU)
Apoapsida1 071 600 km (0,007 163 AU)[pozn. 1]
Perioda (oběžná doba)7,154 552 96[1] d
Orbitální rychlost 
- průměrná10,880 km/s
Sklon dráhy 
- k ekliptice0,20°
- ke slunečnímu rovníku0,05°
Mateřská hvězdaJupiter
Fyzikální charakteristiky
Rovníkový průměr5268,2 ± 0,6[2] km
(0,413 Země)
Povrch0,171 Země km²
Objem7,6 × 1010[pozn. 2] km³
(0,0704 Země)
Hmotnost1,4819 × 1023[2] kg
(0,025 Země)
Průměrná hustota1,936[2] g/cm³
Gravitace na rovníku1,428[pozn. 3] m/s²
(0,146 G)
Úniková rychlost2,741[pozn. 4] km/s
Rychlost rotace271 km/h
(na rovníku)
Sklon rotační osy0,33[3]°
Albedo0,43 ± 0,02[4]
Povrchová teplota 
- průměrná70 K (minimální)[5]
110 K (průměrná)[5]
152 K (maximální)[6] K
Charakteristiky atmosféry
Složení atmosférykyslík[7]

Ganymedes (též Ganymed nebo z angl. Ganymede[8]) je největší Jupiterův měsíc a současně i největší měsíc ve Sluneční soustavě (těsně před Titanem). Společně s Io, Europou a Callisto se řadí mezi Galileovy měsíce. Je větší než planeta Merkur, ale má přibližně jen polovičku její hmotnosti. I tak je ale nejhmotnějším měsícem ve Sluneční soustavě a je 2,01 krát hmotnější než pozemský Měsíc.[9] Ganymedes má průměr 5 262 km. Od Jupiteru je vzdálen 1,07 milionu km a jeho doba oběhu okolo planety je 7,15 pozemského dne.[10] Kdyby Ganymedes obíhal kolem Slunce místo okolo Jupitera, byl by považován za planetu.[11] Spolu s dalšími měsíci Europa a Io je Ganymedes v dráhové rezonanci v poměru 1:2:4 a vůči Jupiteru má vázanou rotaci.

Ganymedův povrch je tvořen převážně silikátovými horninami a vodním ledem. Vnitřní stavba je podobně jako u planet plně vyvinuta, ve středu se nachází tekuté jádro s velkým obsahem železa. Předpokládá se, že přibližně 200 km pod povrchem Ganymedu se nachází oceán tvořený slanou tekutou vodou mezi vrstvami ledu.[12] Povrch měsíce je tvořen dvěma rozdílnými typy: tmavými oblastmi, silně posetými impaktními kráterystáří okolo 4 miliard let, které pokrývají přibližně třetinu měsíce. Druhá část je tvořena mladšími, světlejšími oblastmi, které jsou křížem krážem protkané prasklinami a trhlinami. Na území světlejších oblastí je četnost impaktních kráterů řídká. Vznik těchto světlejších oblastí nebyl zatím přesně geologicky vysvětlen, ale předpokládá se, že je spojen s tektonickými procesy způsobovanými slapovým zahříváním.[2]

Ganymedes je jediný známý měsíc ve sluneční soustavě, u kterého byla zjištěna magnetosféra, pravděpodobně tvořená konvekcí probíhající uvnitř tekutého železného jádra.[13] Slabá magnetosféra měsíce je zcela překryta silným magnetickým polem Jupiteru, se kterým je současně i spojena pomocí otevřených siločar. Ganymedes denně obdrží dávku ionizujícího záření o velikosti okolo 8 Remů.[14] Měsíc má slabou kyslíkovou atmosféru, která je tvořena molekulami O, O2 a pravděpodobně i O3.[7] Atomární vodík je v atmosféře jen menšinová složka. Není známo, zda se v atmosféře nachází i ionosféra.[15]

Ganymedes objevil Galileo Galilei během svého pozorování v roce 1610,[16] ale měsíc pojmenoval jiný astronom Simon Marius dle postavy z řecké mytologie Ganyméda, který byl milencem boha Dia a číšníkem bohů.[17] Jde o jediný měsíc Jupiteru, který je pojmenován podle muže. Kolem měsíce jako první proletěla sonda Pioneer 10,[18] následovaná sondami Voyager, které upřesnily jeho velikost. Následovala mise Galileo, která objevila podzemní oceán a magnetické pole měsíce. Na rok 2020 se plánuje vyslání sondy Europa Jupiter System Mission, která bude mimo jiné zkoumat magnetická pole a podpovrchové oceány Ganymedu a Europy.

Vznik a původ měsíce

Ganymed pravděpodobně vznikl v akrečním disku obklopujícím Jupiter krátce po jeho vzniku.[19] Odhaduje se, že akrece Ganymedu trvala okolo 10 000 let,[20] mnohem méně než 100 000 let potřebných pro vznik Callista. Je možné, že mlhovina obklopující Jupiter byla chudá na plyny v době vzniku Galileových měsíců, což by vysvětlovalo delší čas akrece v případě Callisto.[19] Jelikož Ganymed vznikal blíže k Jupiteru, kde byla mlhovina hustší, vysvětlovalo by to kratší dobu jeho vzniku ve srovnání právě s Callisto.[20] Tato relativně rychlá formace způsobila, že teplo vzniklé akrecí nestihlo vyzářit do okolí, ale soustředilo se uvnitř měsíce a přispělo k vnitřní diferenciaci oddělující od sebe horniny a led. Horniny se usadily uprostřed měsíce, což umožnilo vznik jádra. Kvůli tomu je Ganymed odlišný od Callisto, kde akrece probíhala mnohem déle, takže akreční teplo bylo vyzářeno do okolí a nedošlo u něho k roztavení hornin a diferenciaci jednotlivých vrstev.[21] Tato hypotéza je schopná vysvětlit velké rozdíly ve vzhledu dvou měsíců Jupiteru, které oba vznikly poblíž sebe.[21][22]

Po zformování si Ganymed podržel teplo vzniklé akrecí a diferenciací, které jen pomalu uvolňoval do ledového pláště.[21] Teplo se v plášti šířilo konvekcí.[22] Brzy se do tepelné bilance přidalo teplo vzniklé rozpadem radioaktivních prvků, což zvýšilo teplotu jádra a přispělo k další diferenciaci, během které vzniklo železné a sulfidoželeznaté vnitřní jádro a křemičitý plášť.[21][23] Ganymed se tak stal diferenciovaným tělesem. Pro srovnání, radioaktivní rozpad a vzniklé teplo uvnitř Callisto způsobilo konvekční proudy v jeho ledové stavbě. Jelikož se pohybovaly chladným prostředím, efektivně chladly, takže nemohlo dojít k tavení ledu v globálním měřítku a tedy k vážnější diferenciaci.[24] Konvektivní pohyby na Callisto vedly jen k tomu, že se led a horniny od sebe oddělily jen místně.[24] V dnešní době přetrvává názor, že Ganymed chladne jen pozvolna.[23] Teplo z jádra a z křemičitého pláště se pomalu uvolňuje a umožňuje existenci podpovrchového oceánu,[25] kdežto pomalé chlazení tekutého Fe-FeS jádra způsobuje konvekci a umožňuje vznik magnetického pole.[23] Odhaduje se, že tepelný tok na Ganymedu je větší, než v případě Callisto.[21]

V lednu 2010 byla představena další teorie vysvětlující rozdíly mezi Callisto a Ganymedem, která je založena na rozdílné četnosti dopadů těles na povrchy měsíců způsobených gravitací Jupiteru. Jelikož je Ganymed blíže k Jupiteru než Callisto, byl častěji vystaven impaktům cizích těles o vyšších rychlostech v období velkého bombardování, což podle teorie mělo způsobit roztavení povrchu Ganymedu do velké hloubky. Takto se do nižších vrstev dostalo teplo, které nemohlo rychle uniknout.[26]

Fyzikální charakteristika

Vnitřní stavba Ganymedu

Stavba

Průměrná hustota Ganymedu je 1,936 g/cm3, což by odpovídalo zastoupení přibližně stejného dílu hornin a vody, která je z většiny ve formě ledu.[2]

Hmotnostní zlomek ledu je mezi 46 až 50 %, což je nepatrně méně než u Callista.[27] Předpokládá se, že se v ledu budou nacházet i další příměsi jako čpavek.[25][27] Přesné složení horninového pláště není známo, ale je podobné složení chondritů typu L či LL, které se od chondritů typu H liší především menším zastoupením železa, vyskytujícím se převážně ve formě oxidů a jen v malé míře ve formě železa metalického. Hmotnostní poměr železa vůči křemičitanům je 1,05 až 1,27 v případě Ganymedu, naproti tomu u Slunce je tento poměr 1,8.[27]

Albedo Ganymedu dosahuje 43 %.[28] Vodní led se zdá přítomný všude na povrchu s hmotnostním zastoupením 50 až 90 %,[2] což je značně více než je zastoupení ledu v rámci celého tělesa měsíce. V infračervené spektroskopii se ukazuje přítomnost silných absorpčních čar o délce 1,04, 1,25, 1,5, 2,0 a 3,0 mikrometru odpovídající vodnímu ledu.[28] Popraskaný povrch je jasnější a obsahuje více ledu než tmavší oblasti.[29] Analýza snímků ve vysokém rozlišení, v infračerveném spektru pořízených sondou Galileo a za pomoci pozemních pozorování potvrdila přítomnost i jiných sloučenin než vody, a to oxidu uhličitého, oxidu siřičitého a pravděpodobně i dikyanu, kyseliny sírové a množství organických sloučenin.[2][30] Galileo taktéž objevil síran hořečnatý (MgSO4) a nejspíše i síran sodný (Na2SO4) na povrchu měsíce.[31][32] Objevené soli by mohly pocházet z podpovrchového oceánu.[32]

Povrch Ganymedu je asymetrický, přivrácená polokoule[pozn. 5] směrem ke směru oběhu je světlejší než odvrácená,[28] což je stejné jako v případě Europy, ale opačné než u Callista.[28] Předpokládá se, že přivrácená polokoule je obohacena oxidem siřičitým.[33][34] Oproti tomu rozložení oxidu uhličitého po měsíci se zdá být symetrické, kromě oblastí pólů, kde nebyl pozorován.[30][35] Impaktní krátery na Ganymedu (vyjma jednoho) neukazují žádné známky obohacení oxidem uhličitým, které je známé z Callista. Pravděpodobně v minulosti došlo k tomu, že Ganymed své zásoby oxidu uhličitého vyčerpal.[35]

Ostrá hranice odděluje tmavou oblast Nicholson Regio od světlé oblasti Harpagia Sulcus

Zdá se, že Ganymed je zcela diferencovaný. Skládá se z jádra, které obsahuje sulfidy železa a železo, křemičitého pláště a vnějšího ledového pláště.[2][36] Tento model je podporován nízkou hodnotou bezrozměrného[pozn. 6] momentu setrvačnosti — 0,3105 ± 0,0028 —, která byla změřena během přeletů sondy Galileo.[2][36] Ve skutečnosti má Ganymed nejnižší moment setrvačnosti ze všech pevných těles ve sluneční soustavě. Existence tekutého, na železo bohatého jádra umožňuje vysvětlit existenci vlastního magnetického pole Ganymedu naměřeného sondou Galileo.[23] Konvekce tekutého železa, které je vysoce elektricky vodivé, je nejpřijímanější model vysvětlující vznik magnetického pole.[13]

Ganymed

Určení přesné tloušťky jednotlivých vrstev uvnitř Ganymedu závisí na poměru minerálů v silikátech (zastoupení olivínu a pyroxenu) a množství síry v jádře.[27][36] Odhaduje se, že vnitřní jádro má poloměr 700 až 900 kilometrů a 800 až 1000 kilometrů mocný by mohl být vnější ledový plášť, zbytek připadá na silikátový plášť.[22][23][36][37] Hustota jádra se pravděpodobně pohybuje mezi 5,5 až 6 g/cm3, silikátový plášť pak mezi 3,4 až 3,6 g/cm3.[23][27][36][37] Některé modely vysvětlující vznik magnetického pole požadují přítomnost kapalného jádra tvořeného čistým železem na místo železného jádra s vyšším poměrem síry. Poloměr takovéhoto jádra by pak mohl dosahovat až 500 kilometrů.[23] Teplota v jádře Ganymedu je pravděpodobně mezi 1500 až 1700 K a tlak dosahuje přes 10 GPa (gigapascalů, tj. 105 barů).[23][36]

Povrch

Ganymed měl složitou geologickou historii, která vytvořila hory, údolí, krátery a toky lávy. Jeho povrch je pokryt světlými a tmavými oblastmi, které se od sebe pravděpodobně liší stářím. Tmavé oblasti jsou hustě pokryty krátery, což naznačuje, že vznikly velice dávno. Zabírají přibližně třetinu povrchu.[38] Naproti tomu světlé oblasti vykazují nižší četnost impaktních kráterů, ale pro změnu jsou protkány množstvím trhlin a prasklin. Tmavé oblasti nejspíše obsahují jíly a organické materiály, které by mohly napovědět více o tělesech, ze kterých měsíc vznikl v době akrece.

Pro povrchové útvary na Ganymedu jsou vybírána jména vesměs z mytologií kultur úrodného půlměsíce od Egypta po Mezopotámii, přitom krátery mají jména bohů a hrdinů.[39]

Jupiter a jeho měsíce přijmou méně než 1/30 množství slunečního záření přijímaného Zemí, Ganymed navíc v podstatě nemá atmosféru, která by teplo zachycovala. Ganymedův den je téměř 7 pozemských dní dlouhý a stejnou dobu potřebuje k vykonání oběhu okolo Jupitera, což vede k tomu, že se na povrchu pohybují teploty od 70 K do 152 K.

Povrchové útvary

Související informace naleznete také v článku Seznam útvarů na Ganymedu.
Mozaika fotografií pořízená sondou Voyager 2 ukazujíc odvrácenou stranu měsíce vzhledem k Jupiteru. Nahoře vpravo leží tmavá prastará oblast Galileo Regio, kterou odděluje Uruk Sulcus od menší tmavé oblasti Marius Regio. Čerstvý led vyvržen z poměrně mladého kráteru Osirir vytváří ve spodní části radiálně se rozbíhající paprsky.

Tepelný mechanismus potřebný pro vznik rozpraskaného terénu povrchu Ganymedu je zatím nezodpovězená otázka planetologie. Moderní názor předpokládá, že vznikl jako projev přírodních tektonických procesů,[2] ve kterých hrál kryovulkanismus jen minimální (pokud nějakou) roli.[2] Síly, které by způsobily napětí v Ganymedově ledové litosféře, mohly pocházet z gravitační interakce s Jupiterem vedoucí ke vzniku tepla v dávné době, kdy prošel nestabilními dráhovými rezonancemi.[2][40] Gravitační pnutí na led mohlo způsobit zahřátí vnitřní části měsíce a napnout litosféru, což by vedlo k popraskání a sérii výzdvihů a poklesů částí litosféry a přetvoření až 70 % starého tmavého povrchu.[2][41] Popraskaný povrch ale mohl vzniknout taktéž procesy spojenými s formováním jádra částečně ohřívaného slapovými procesy, což by způsobilo mírné zvětšení Ganymedu o 1 až 6 % vlivem fázových změn v ledu a teplotní roztažnosti.[2] Během následného vývoje by teplá voda stoupala k povrchu od jádra ve formě plumy, což by způsobovalo nárůst tlaku a tektonické deformace litosféry.[42] Radioaktivní rozpady minerálů jsou v současnosti hlavním energetickým zdrojem tepla ovlivňující tloušťku podpovrchového oceánu. Modely naznačují, že pokud by byla výstřednost dráhy o řád větší než je nyní (jak mohlo být v minulosti) teplo získávané slapovými procesy by bylo větší než z radioaktivních rozpadů.[43]

Impaktní krátery je možné pozorovat na obou typech povrchu, ale četnější jsou na tmavých částech, které byly do velké míry formovány nárazy cizích těles.[2] Světlejší popraskaný terén je krátery poset mnohem méně, takže se impakty na jeho vývoji podepsaly jen málo.[2] Četnost impaktních kráterů naznačuje, že tmavé oblasti jsou staré přibližně 4 miliardy let, což je stejně jako vrchoviny na Měsíci. Oproti tomu světlé oblasti jsou mladší, ovšem zatím není známo o kolik.[44] Ganymed mohl zažít období pozdního těžkého bombardování před 3,5 až 5 miliardami let podobně jako Měsíc.[44] Pokud by se tato hypotéza potvrdila, znamenalo by to, že většina impaktních kráterů by pocházela z tohoto období.[9] Krátery se vzájemně překrývají a přerušují i systémy prasklin, což naznačuje, že jsou mladší než praskliny. Na povrchu je možné pozorovat i relativně mladé krátery s příčně se rozbíhajícími paprsky vyvrženého materiálu.[9][45] Krátery na Ganymedu jsou plošší než krátery na Měsíci a Merkuru, což je pravděpodobně způsobeno ledovou kůrou Ganymedu, která se může rozpustit a tak krátery zarovnávat. U starších kráterů je tak možné pozorovat pouze jejich bývalé okraje.[9]

Čerstvý impaktní kráter na rozpraskaném povrchu měsíce

Snadno rozpoznatelný útvar na Ganymedu je temná planina pojmenovaná Galileo Regio, na které se nachází série soustředně se sbíhajících prasklin či brázd, vzniklých zřejmě během nějakého období geologické aktivity.[46] Dalšími významnými oblastmi jsou polární čepičky měsíce, které jsou pravděpodobně tvořeny zmrzlou vodou zasahující až do oblasti 40° severní i jižní šířky.[31] Čepičky byly poprvé pozorovány během průletu sond Voyager a podle údajů získaných sondou Galileo stojí za jejich vznikem bombardování ledu plazmatem. Ganymed má totiž vlastní magnetické pole, a důsledkem jeho přítomnosti je, že oblasti ve vyšších zeměpisných šířkách jsou nabitými částicemi pocházejícími z Jupiteru bombardovány mnohem intenzivněji. Nárazy těchto částic způsobují rozprašování zmrzlého materiálu, z něhož se následně teplotními vlivy oddělí světlý vodní led od tmavších materiálů. Vodní led pak má tendenci se usazovat hlavně v chladnějších oblastech, což je zřejmě důvodem vzniku polárních čepiček.[47]

Krátery, světlé a tmavé pruhy

Povrch měsíce Ganymed vykazuje četné impaktové krátery, mnoho z nich má rozsáhlé systémy jasných paprsků. Krátery postrádající systémy paprsků jsou pravděpodobně starší než ty, které je mají. Světlé pruhy křižují povrch v různých směrech a obsahují spletitý systém střídavých přímočarých světlých a tmavých pruhů, které mohou představovat deformace vrstvy ledové kůry.

Systém souřadnic

Délka je na Ganymedu odvozena od kráteru Anat, který po určení souřadného systému leží na 128° délky.[48]

Atmosféra a ionosféra

V roce 1972 mezinárodní tým astronomů z Indie, Spojeného království a USA pracující na indonéské observatoři Bosscha ohlásil objev slabé atmosféry okolo měsíce během zákrytu hvězdy.[49] Atmosférický tlak na povrchu odhadly na 1 μBar (0,1 Pa).[49] Nicméně v roce 1979 pozorovala sonda Voyager 1 zákryt hvězdy κ Centauri během jejího letu k planetě s rozdílnými výsledky.[50] Měření během zákrytu byla provedena v dalekém ultrafialovém spektru světla o vlnové délce 200 nm, což zaručilo citlivější měření než pozorování ve viditelném spektru z roku 1972. Voyager 1 nezjistil žádnou přítomnost atmosféry okolo měsíce. Maximum částic nad povrchem určil na 1,5e+9 cm−3, což by odpovídalo atmosférickému tlaku na povrchu méně než 2,5e-5 μBar;[50] hodnotě, která byla téměř o pět řádů menší, než bylo naměřeno během roku 1972. Starší měření se tak ukázalo jako příliš optimistické.[50]

Teplotní mapa povrchu Ganymedu v nepravých barvách

V roce 1995 pozoroval Hubbleův vesmírný dalekohled slabou kyslíkovou atmosféru Ganymedu, která je velice podobná atmosféře Europy.[7][51] Teleskop objevil slabé světelné záření atmosféry (anglicky tzv. airglow) atomů kyslíku v dalekém ultrafialovém záření o délce 130,4 nm a 135,6 nm. Světelné záření se nachází v atmosféře, když molekulární kyslík je disociován srážkou s elektronem,[7] což je důkaz neutrální atmosféry složené primárně z molekul O2. Hustota částic nad povrchem bude pravděpodobně okolo 1,2 až 7+e8 cm−3 odpovídajíc atmosférickému tlaku při povrchu 0,2 až 1,2e−5 μBaru.[pozn. 7][7] Tyto hodnoty odpovídají hornímu limitu toho, co naměřily sondy Voyager. Kyslík nemusí v tomto případě ale být důkazem života, jelikož se předpokládá, že vzniká rozpadem vodních molekul vázaných v ledu na vodík a kyslík vlivem radiace. Jelikož je pak vodík lehčí než kyslík, snáze unikne gravitačnímu působení Ganymedu do okolního vesmíru.[51] Výskyt světelného záření na Ganymedu není prostorově stejný jako v případě Europy, Hubbleův teleskop pozoroval dvě zářící oblasti na severní a jižní polokouli okolo 50° šířky, což odpovídá hranici mezi otevřenými a zavřenými silokřivkami magnetosféry Ganymedu.[52] Zářící oblasti jsou pravděpodobně polární záře způsobené pohybem zachyceného plazmatu podél otevřených siločar.[53]

Existence neutrální atmosféry vede k tomu, že by mohla existovat ionosféra, jelikož molekuly kyslíku jsou ionizované dopady energeticky nabitých elektronů přicházejících z magnetosféry[54] a sluneční extrémně ultrafialovou radiací.[15] Nicméně existence ionosféry Ganymedu je kontroverzní, podobně jako vlastnosti jeho atmosféry. Některá měření sondy Galileo našly zvýšenou hustotu elektronů poblíž měsíce naznačující existenci ionosféry, další neobjevily nic.[15] Hustota elektronů poblíž povrchu se pohybuje mezi 400–2500 cm−3.[15] K roku 2008 ale vlastnosti hypotetické ionosféry nebyly detailněji určeny.

Dalším důkazem existence kyslíkové atmosféry pocházejí od spektroskopických měření plynů zachycených v ledu na povrchu Ganymedu. V roce 1996 se podařilo zaznamenat spektrální čáry ozónu (O3).[55] V roce 1997 spektroskopické analýzy odhalily dimery (neboli dvouatomový kyslík) v absorpčních čarách molekulárního kyslíku. Taková absorpce je možná jen pokud je kyslík v pevném skupenství. Nejlepším kandidátem jsou molekuly kyslíku zachyceného v ledu. Hloubka absorpčních pásů záleží na šířce a délce, než na albedu povrchu; mají tendenci klesat s rostoucí šířkou na Ganymedu, zatímco O3 ukazuje opačný efekt.[56] Laboratorní výsledky ukazují, že O2 se nebude shlukovat a bublat, ale rozpustí se v ledu na relativně teplém povrchu Ganymedu, kde se teploty pohybují kolem 100 K.[57]

Ačkoliv na Europe byl sodík objeven, na Ganymedu se při podobném hledání v roce 1997 nenašel. Sodík byl přinejmenším 13 krát méně zastoupen okolo Ganymedu než je tomu v okolí Europy, pravděpodobně kvůli jeho relativnímu nedostatku na povrchu nebo kvůli tomu, že magnetosféra odrazí energeticky nabité částice.[58] Dalším prvkem v atmosféře je atomární vodík. Atomy vodíku byly pozorovány až 3000 km nad povrchem měsíce. Jejich hustota na povrchu dosahuje 1,5e+4 cm−3.[59]

Odvrácená strana Ganymedu v nepravých barvách, fotografie pořízená sondou Galileo[60]

Magnetické pole

Sonda Galileo provedla šest těsných průletů kolem měsíce mezi lety 1995 až 2000,[13] během kterých objevila trvalé magnetické dipólové pole nezávislé na Jupiterovu působení.[61] Ganymed je jediným měsícem sluneční soustavy, u kterého bylo vlastní magnetické pole neindukované polem planety zjištěno.

Magnetické pole kolem Ganymedu lze v prvním přiblížení považovat za složení vlastního dipólového pole Ganymedu s magnetickým polem Jupiteru. Magnetické pole Jupiteru lze v místě obíhajícího Ganymedu považovat za homogenní, s velikostí magnetické indukce přibližně 120 nT,[61] jeho směr se však během oběhu měsíce kolem planety poněkud mění. Z naměřených dat skutečného magnetického pole pak vycházejí hodnoty vlastního magnetického pole Ganymedu: hodnota magnetického momentu se pohybuje okolo 1,3×1020 A·m2,[13] což je třikrát více než například magnetický moment Merkuru. Směr magnetického dipólu je přitom odchýlen od rotační osy o úhel přibližně 176° a má tak téměř opačný směr než magnetický dipól Jupiteru; „severní“ magnetický pól leží pod oběžnou rovinou na 24° délky Ganymedu (hlavní poledník 0° směřuje vlivem vázané rotace vždy k Jupiteru, „severní“ magnetický pól leží na polokouli „odvrácené“[pozn. 5] vzhledem k jeho oběžnému pohybu).[13] Magnetická indukce vlastního pole na povrchu Ganymedu je na rovníku přibližně 750 nT, na pólech asi dvakrát vyšší a to 1440 nT.[13]

Schéma magnetického pole u Ganymedu

Struktura výsledného magnetického pole je poněkud odlišná od planetárních magnetických polí. Vzhledem k síle a orientaci obklopujícího magnetického pole Jupiteru pouze v rovníkové oblasti Ganymedu (do cca 30° šířky Ganymedu) indukční čáry vystupující z povrchu měsíce do něj opět vstupují (a vytvářejí tak oblast vlastní magnetosféry Ganymedu); v ostatních oblastech jsou navázané na indukční čáry Jupiterova pole (magnetické pole je součástí magnetosféry Jupiteru). Průměr magnetosféry je 4-5 poloměrů Ganymedu. Byla prokázána i existence magnetopauzy. Lepší modely magnetického pole uvažují navíc plazma Jupiterovy ionosféry, ve které Ganymed obíhá, a započítávají tak do modelu magnetosféry i magnetohydrodynamické vlivy. Jsou tak schopny vysvětlit, proč na rozdíl od magnetosféry Země není magnetopauza u Ganymedu spojena s rázovou vlnou – plazma spolurotující s Jupiterem má vzhledem ke Ganymedu rychlost nižší, než je Alfvénova rychlost (přibližně poloviční[62]). V oblasti vlastní magnetosféry jsou v uzavřeném magnetickém poli zachycovány nabité částice a tvoří se zde radiační pásy.[13] V polárních oblastech Ganymedu může plazma z Jupiterovy ionosféry podél magnetických indukčních čar vstupovat až do atmosféry měsíce a způsobuje polární záře, které skutečně byly pozorovány Hubbleovým teleskopem v ultrafialovém spektru.[7] Těžké ionty dopadající až na povrch mají dostatečnou energii k vyrážení atomů ze struktury ledu a způsobují tím jeho charakteristické ztmavnutí.[54]

Za předpokladu, že Ganymed má diferencovanou strukturu s objemným kovovým jádrem,[2][23] jeho vlastní magnetické pole je generované podobným způsobem jako u Země – je výsledkem pohybu vodivých materiálů uvnitř měsíce.[13][23] Pravděpodobně vzniká konvekčním pohybem uvnitř jádra, který vytváří magnetohydrodynamické dynamo.[13][63] Jisté pochybnosti u předpokladů tohoto modelu vzbuzuje fakt, že podobná tělesa vlastní pole nemají. Některé výzkumy naznačují, že jádro měsíce by mělo být v současnosti natolik vychladlé, že by tekutý pohyb v jádře, jakož i magnetické pole, měly být již zaniklé. Navrženým východiskem je podobné zdůvodnění, jako u popraskaného povrchu – slapové jevy by dostatečně zahřívaly plášť a bránily tak jádru vychladnout.[41] Dalším vysvětlením by mohla být remanentní magnetizace křemičitanových hornin v plášti, způsobená v minulosti silným magnetickým polem generovaným magnetohydrodynamickým dynamem.[2]

Vedle vlastního magnetického pole má Ganymed, podobně jako Callisto a Europa, také indukované dipólové magnetické pole. Vzniká v důsledku proměnlivosti magnetického pole Jupiteru v okolí Ganymedu. Je asi o řád slabší než vlastní magnetické pole a jeho převládající orientace je v radiálním směru, tedy směrem od nebo k Jupiteru. U rovníku v místech, kde je nejsilnější, dosahuje jeho magnetická indukce hodnoty až 60 nT.[13] Jeho existence naznačuje, že měsíc by mohl mít velké množství podpovrchové slané vody s vysokou elektrickou vodivostí.[13]

Oběžná dráha a rotace

Ganymed obíhá Jupiter ve vzdálenosti 1 070 400 km, a mezi Galileovými měsíci je tedy od Jupitera druhý nejvzdálenější (po Callisto).[10] Jeden oběh mu trvá asi sedm dní a tři hodiny. Jako většina známých měsíců má Ganymed vázanou rotaci, takže je k planetě stále přivrácen stejnou stranou.[31] Jeho oběžná dráha je lehce výstřední a mírně nakloněná k Jupiterovu rovníku. Výstřednost (excentricita) oběžné dráhy a její naklonění (inklinace) se kvaziperiodicky mění vlivem gravitačního rušení Jupitera a Slunce. Tyto změny se odehrávají v časovém měřítku staletí, přičemž excentricita se mění v rozsahu 0,0009–0,0022 a inklinace v rozsahu 0,05–0,32°.[64] Tyto oběžné změny současně způsobují, že se sklon rotační osy (úhel mezi rotační a oběžnou osou) mění mezi 0 až 0,33°.[3]

Animace ukazuje Laplacovu rezonanci měsíce Io s Europou a Ganymedem

Měsíce Io, Europa a Ganymed se nacházejí v tzv. dráhové rezonanci 4 : 2 : 1. To znamená, že během jednoho oběhu Ganymeda kolem Jupiteru oběhne Europa dvakrát a Io čtyřikrát.[64][65] Horní konjunkce Europy a Io nastává vždy v bodě, kdy je Io nejblíže Jupiteru (tzv. perijovium) a Europa nejdále (tzv. apojovium). Horní konjunkce Europy a Ganymeda nastává, když je Europa v perijoviu.[64] Jednoduché poměry oběžných dob těchto těles (tzv. Laplaceova rezonance) také umožňují konjunkce trojité.[66]

Současná Laplaceova rezonance již nedokáže více zvýšit výstřednost dráhy Ganymedu.[66] Nyní excentricita dosahuje přibližné hodnoty 0,0013, která je pravděpodobně pozůstatkem z dávné historie satelitu, kdy zvyšování výstřednosti dráhy ještě bylo možné.[65] Tato hodnota je však současně poněkud matoucí. Pokud na ni rezonance již nemá žádný vliv, dalo by se očekávat, že bude narušena vlivem slapové disipace uvnitř Ganymedu.[66] To znamená, že k poslednímu nárůstu výstřednosti muselo dojít nanejvýš před několika stovkami milionů let.[66] Protože výstřednost oběžné dráhy Ganymedu je relativně malá – v průměru 0,0013[1] –, znamená to, že slapové zahřívání měsíce je v současné době zanedbatelné.[66] V minulosti však Ganymed mohl projít jednou nebo více rezonancemi podobnými rezonanci Laplaceově, díky nimž byla výstřednost oběžné dráhy zvýšena až na hodnotu 0,01–0,02.[2][66] To pravděpodobně způsobilo významné slapové zahřívání vnitřku Ganymedu. Jeho zvrásněný terén by mohl být důsledkem jedné nebo i více takových episod.[2][66]

Původ Laplaceovy rezonance mezi měsíci Io, Europa a Ganymed není zatím objasněn. Podle jedné z hypotéz je nutné ho hledat již v počátcích sluneční soustavy.[67] Podle jiné se však objevila až poté, co již byla formace sluneční soustavy ukončena. Události mohly probíhat v následujícím sledu: Slapové působení mezi Io a Jupiterem způsobilo nárůst oběžné dráhy Io, který se tak dostal do rezonance 2 : 1 s Europou. Poté tento nárůst pokračoval, ale část momentu hybnosti byla přenesena na Europu, neboť vlivem rezonance narůstala i její oběžná dráha. Tento proces pokračoval, dokud se Europa nedostala do rezonance 2 : 1 s Ganymedem.[66] Nakonec došlo k synchronizaci konjunkcí všech tří měsíců a k jejich uzamčení v Laplaceově rezonanci.[66]

Objev a pojmenování

7. ledna 1610 Galileo Galilei pozoroval se svým nově zkonstruovaným dalekohledem tři světelné zdroje kolem Jupiteru, o kterých se domníval, že se jedná o hvězdy. Během opakovaného pozorování druhého večera si všiml, že se tyto body pohnuly. Současně 13. ledna 1610 objevil i čtvrtou předpokládanou hvězdu, která se ukázala být Ganymed. 15. ledna Galileo přišel s vysvětlením, že tyto údajné hvězdy jsou tělesa, které obíhají okolo Jupiteru.[68] Jako objeviteli mu připadlo právo pojmenovat měsíce, a rozhodl se je pojmenovat Medicejské měsíce.[17]

Francouzský astronom Nicolas-Claude Fabri de Peiresc navrhoval, aby se pro každý měsíc ze skupiny Medicejských měsíců zavedl vlastní pojmenování, ale jeho návrh byl zamítnut.[17] Další astronom Simon Marius, který tvrdil, že objevil měsíce Jupiteru před Galileem,[69] navrhoval původně pojmenování „Saturn Jupiteru“, „Jupiter Jupiteru“ (pro Ganymed), „Venuše Jupiteru“ a „Merkur Jupiteru“, ale i toto pojmenování bylo zamítnuto. Na popud Johana Keplera Marius se ještě jednou pokusil navrhnout jiná pojmenování pro měsíce:[17]

… pak tam byl také Ganymédes, nádherný syn krále Trosa, kterého Jupiter, vzav na sebe podobu orlovu, přenesl na svých zádech do nebes, jak dodnes básníci zpívají… Třetí též pán světla, Ganymédes…[68]

Toto a i další jména pro Galileovo měsíce upadlo v zapomnění po určitý čas a nebylo používáno až do první poloviny 20. století, kdy se astronomové k těmto názvům vrátili. V dřívější astronomické literatuře je Ganymed uváděn jako římská číslice III, což vyjadřovalo jeho pozici vzhledem k Jupiteru. Jednalo se tak o třetí měsíc Jupiteru. Po objevení měsíců Saturnu se pak začalo opět používat pojmenování, které navrhli společně Kepler a Marius.[17] Ganymed se stal jediným měsícem Jupiteru, který nese mužské jméno. Ostatní jsou ženského rodu a také ony nesou jména milenek boha Dia.

Průzkum

Vesmírná sonda Voyager

Několik sond letících či obíhajících okolo Jupiteru detailně zkoumalo i měsíc Ganymed. První sonda, která systém navštívila, byl americký Pioneer 10 následovaný Pioneerem 11.[18] Pioneery o Ganymedu mnoho informací nezískaly.[70] Po nich soustavou proletěla dvojice amerických sond Voyager 1 a Voyager 2 v roce 1979. Průlet Voyagerů pomohl určit průměr měsíce s výsledkem, že Ganymed je větší než Saturnův měsíc Titan, což vyvrátilo předchozí opačný názor.[71] Ukázaly také povrch pokrytý trhlinami a prasklinami.[72]

V roce 1995 přiletěla do soustavy sonda Galileo, která byla navedena na oběžnou dráhu kolem Jupiteru. Mezi lety 1996 až 2000 provedla celkem šest těsných průletů kolem Ganymedu s cílem podrobně ho zmapovat a prozkoumat.[31] Jednalo se o průlety nazvané G1, G2, G7, G8, G28 a G29.[13] Během nejtěsnějšího průletu G2 proletěla sonda Galileo pouze 264 km nad povrchem měsíce.[13] Průlet G1 v roce 1996 přinesl objev magnetické pole měsíce,[73] později v roce 2001 bylo ohlášeno objevení podpovrchového oceánu.[13][31] Sonda Galileo odeslala zpět na Zemi velké množství spektroskopických snímků, s jejichž pomocí byly objeveny na povrchu složky netvořené ledem.[30] V roce 2007 proletěla kolem Ganymedu americká sonda New Horizons na své cestě k Plutu. Sonda během průletu vyhotovila mapu topografie a složení povrchu.[74][75]

Na rok 2020 je naplánován start mise Europa Jupiter System Mission (EJSM) ve spolupráci evropské ESA a americké NASA za účelem prozkoumat měsíce Jupiteru. V únoru 2009 agentury společně prohlásily, že tato mise dostane prioritu před misí Titan Saturn System Mission.[76] I přes to ale bude muset mise soupeřit s ostatními projekty ESA o financování.[77] V případě, že se mise uskuteční, bude se skládat z amerického modulu Jupiter Europa Orbiter, evropského modulu Jupiter Ganymede Orbiter a japonského Jupiter Magnetospheric Orbiter.

Již dříve se objevovaly návrhy sond na výzkum Ganymedu. Jedním z nich byl koncept sondy Jupiter Icy Moons Orbiter, který měl získávat energii pomocí štěpení prvků.[78] Nicméně mise byla v roce 2005 zrušena pro škrty v rozpočtu.[79] Další neuskutečněná mise byla například sonda nazvaná The Grandeur of Ganymede.[80]

Odkazy

Poznámky

  1. Apocentrum je odvozeno od vedlejší osy a a excentricity e: .
  2. Objem v je odvozen z poloměru r: .
  3. Povrchová gravitace odvozena z hmotnosti m, gravitační konstanty a poloměru r: .
  4. Úniková rychlost odvozena z hmotnosti m, gravitační konstanty a poloměru r: .
  5. a b Přivrácená polokoule je ta, která směřuje ve směru oběhu kolem planety, odvrácená je definována opačně.
  6. Bezrozměrný moment setrvačnosti lze vypočítat jako I/(mr^2), kde I je moment setrvačnosti, m hmotnost a r střední poloměr. Pro homogenní kouli je bezrozměrný moment roven 0,4, avšak čím více hustota roste směrem ke středu tím je hodnota nižší.
  7. Množství částic nad povrchem a tlak byly spočteny ve sloupcové hustotě pozorované Hallem a kolektiv v roce 1998, za předpokladu škálové výšky 20 km a teploty 120 K.

Reference

V tomto článku byl použit překlad textu z článku Ganymede (moon) na anglické Wikipedii.

  1. a b c d Planetary Satellite Mean Orbital Parameters . Jet Propulsion Laboratory, California Institute of Technology. Dostupné online. 
  2. a b c d e f g h i j k l m n o p q r s t SHOWMAN, Adam P.; MALHOTRA, Renu. The Galilean Satellites. Science. 1999, roč. 286, s. 77–84. Dostupné online . DOI 10.1126/science.286.5437.77. PMID 10506564.  Archivováno 14. 5. 2011 na Wayback Machine.
  3. a b BILLS, Bruce G. Free and forced obliquities of the Galilean satellites of Jupiter. Icarus. 2005, roč. 175, s. 233–247. Dostupné online. DOI 10.1016/j.icarus.2004.10.028. 
  4. YEOMANS, Donald K. Planetary Satellite Physical Parameters . JPL Solar System Dynamics, 2006-07-13 . Dostupné online. 
  5. a b DELITSKY, Mona L.; LANE, Arthur L. Ice chemistry of Galilean satellites. J.of Geophys. Res.. 1998, roč. 103, čís. E13, s. 31,391–31,403. Dostupné v archivu pořízeném dne 2016-03-04. DOI 10.1029/1998JE900020.  Archivováno 3. 10. 2006 na Wayback Machine.
  6. ORTON, G.S.; SPENCER, G.R.; TRAVIS, L.D., et al. Galileo Photopolarimeter-radiometer observations of Jupiter and the Galilean Satellites. Science. 1996, roč. 274, s. 389–391. Dostupné online. DOI 10.1126/science.274.5286.389. 
  7. a b c d e f HALL, D.T.; FELDMAN, P.D.; MCGRATH, M.A., et al. The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede. The Astrophysical Journal. 1998, roč. 499, s. 475–481. Dostupné online. DOI 10.1086/305604. 
  8. stránky USGS věnující se planetární nomenklatuře
  9. a b c d Ganymede . nineplanets.org, October 31, 1997 . Dostupné online. 
  10. a b Jupiter's Moons . The Planetary Society . Dostupné online. 
  11. HAMILTON, Calvin J. Ganymede . Solarviews.com cit. 2010-03-22. Dostupné online. (anglicky) 
  12. Solar System's largest moon likely has a hidden ocean online. Jet Propulsion Laboratory, NASA, 2000-12-16 cit. 2008-01-11. Dostupné v archivu pořízeném dne 2012-01-17. 
  13. a b c d e f g h i j k l m n KIVELSON, M.G.; KHURANA, K.K.; CORONITI, F.V., et al. The Permanent and Inductive Magnetic Moments of Ganymede. Icarus. 2002, roč. 157, s. 507–522. Dostupné online PDF. DOI 10.1006/icar.2002.6834. 
  14. RINGWALD, Frederick A. SPS 1020 (Introduction to Space Sciences) online. California State University, Fresno, 2000-02-29 cit. 2009-07-04. Dostupné v archivu pořízeném dne 2009-09-20. 
  15. a b c d EVIATAR, Aharon; VASYLIUNAS, Vytenis M.; GURNETT, Donald A., et al. The ionosphere of Ganymede. Plan.Space Sci.. 2001, roč. 49, s. 327–336. Dostupné online ps. DOI 10.1016/S0032-0633(00)00154-9. 
  16. Sidereus Nuncius online. Eastern Michigan University cit. 2008-01-11. Dostupné v archivu pořízeném dne 2001-02-23. 
  17. a b c d e Satellites of Jupiter online. The Galileo Project cit. 2007-11-24. Dostupné online. 
  18. a b Pioneer 11 online. cit. 2008-01-06. Dostupné v archivu pořízeném dne 2011-09-02. 
  19. a b CANUP, Robin M.; WARD, William R. Formation of the Galilean Satellites: Conditions of Accretion. The Astronomical Journal. 2002, roč. 124, s. 3404–3423. Dostupné online PDF. DOI 10.1086/344684. 
  20. a b MOSQUEIRA, Ignacio; ESTRADA, Paul R. Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus. 2003, roč. 163, s. 198–231. Dostupné online. DOI 10.1016/S0019-1035(03)00076-9. 
  21. a b c d e MCKINNON, William B. On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto. Icarus. 2006, roč. 183, s. 435–450. Dostupné online. DOI 10.1016/j.icarus.2006.03.004. 
  22. a b c FREEMAN, J. Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto. Planetary and Space Science. 2006, roč. 54, s. 2–14. Dostupné v archivu pořízeném dne 24-08-2007. Dostupné také na: 1. DOI 10.1016/j.pss.2005.10.003.  Archivováno 24. 8. 2007 na Wayback Machine.
  23. a b c d e f g h i j HAUCK, Steven A.; AURNOU, Jonathan M.; DOMBARD, Andrew J. Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Of Geophys. Res.. 2006, roč. 111, s. E09008. Dostupné v archivu pořízeném dne 27-02-2008. DOI 10.1029/2005JE002557.  Archivováno 27. 2. 2008 na Wayback Machine.
  24. a b NAGEL, K.A; BREUER; SPOHN, T. A model for the interior structure, evolution, and differentiation of Callisto. Icarus. 2004, roč. 169, s. 402–412. Dostupné online. DOI 10.1016/j.icarus.2003.12.019. 
  25. a b SPOHN, T.; SCHUBERT, G. Oceans in the icy Galilean satellites of Jupiter?. Icarus. 2003, roč. 161, s. 456–467. Dostupné v archivu pořízeném dne 27-02-2008. DOI 10.1016/S0019-1035(02)00048-9.  Archivováno 27. 2. 2008 na Wayback Machine.
  26. MARTINEK, František. Proč se liší měsíce Ganymed a Kallisto online. cit. 2010-02-05. Dostupné online. 
  27. a b c d e KUSKOV, O.L.; KRONROD, V.A. Internal structure of Europa and Callisto. Icarus. 2005, roč. 177, s. 550–369. Dostupné online. DOI 10.1016/j.icarus.2005.04.014. 
  28. a b c d CALVIN, Wendy M., et al. Spectra of the ice Galilean satellites from 0.2 to 5 µm: A compilation, new observations, and a recent summary. J. Geophys. Res.. 1995, roč. 100, s. 19,041–19,048. Dostupné online. DOI 10.1029/94JE03349. 
  29. Ganymede: the Giant Moon online. Wayne RESA cit. 2007-12-31. Dostupné v archivu pořízeném dne 2007-12-02. Dostupné také na: 2. 
  30. a b c MCCORD, T.B.; HANSEN, G.V.; CLARK, R.N., et al. Non-water-ice constituents in the surface material of the icy Galilelean satellites from Galileo near-infrared mapping spectrometer investigation. J. Of Geophys. Res.. 1998, roč. 103, čís. E4, s. 8,603–8,626. Dostupné online. DOI 10.1029/98JE00788. 
  31. a b c d e MILLER, Ron; HARTMANN, William K. The Grand Tour: A Traveler's Guide to the Solar System. 3. vyd. Thailand: Workman Publishing, květen 2005. Dostupné online. ISBN 0-7611-3547-2. S. 108–114. 
  32. a b MCCORD, Thomas B.; HANSEN, Gary B.; HIBBITTS, Charles A. Hydrated Salt Minerals on Ganymede’s Surface: Evidence of an Ocean Below. Science. 2001, roč. 292, s. 1523–1525. Dostupné online. DOI 10.1126/science.1059916. PMID 11375486. 
  33. DOMINGUE, Deborah; LANE, Arthur; MOTH, Pimol. Evidence from IUE for Spatial and Temporal Variations in the Surface Composition of the Icy Galilean Satellites. Bulletin of the American Astronomical Society. 1996, roč. 28. Dostupné online. 
  34. DOMINGUE, Deborah L.; LANE, Arthur L.; BEYER, Ross A. IEU’s detection of tenuous SO2 frost on Ganymede and its rapid time variability. Geophys. Res. Lett.. 1998, roč. 25, čís. 16, s. 3,117–3,120. Dostupné online. DOI 10.1029/98GL02386. 
  35. a b HIBBITTS, C.A., et al. Carbon dioxide on Ganymede. J.of Geophys. Res.. 2003, roč. 108, čís. E5, s. 5,036. Dostupné online. DOI 10.1029/2002JE001956. 
  36. a b c d e f SOHL, F., et al. Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites. Icarus. 2002, roč. 157, s. 104–119. Dostupné online. DOI 10.1006/icar.2002.6828. 
  37. a b KUSKOV, O.L.; KRONROD, V.A.; ZHIDICOVA, A.P. Internal Structure of Icy Satellites of Jupiter. Geophysical Research Abstracts. European Geosciences Union, 2005, roč. 7, s. 01892. Dostupné online PDF. 
  38. PETTERSON, Wesley, et al. A Global Geologic Map of Ganymede. Lunar and Planetary Science. 2007, roč. XXXVIII, s. 1098. Dostupné online PDF. 
  39. KLEZCEK, Josip. Velká encyklopedie vesmíru. 1. vyd. Praha: Academia, 2002. ISBN 80-200-0906-X. S. 134. 
  40. SHOWMAN, Adam P.; STEVENSON, David J.; MALHOTRA, Renu. Coupled Orbital and Thermal Evolution of Ganymede. Icarus. 1997, roč. 129, s. 367–383. Dostupné online PDF. DOI 10.1006/icar.1997.5778. 
  41. a b BLAND; SHOWMAN, A.P.; TOBIE, G. Ganymede's orbital and thermal evolution and its effect on magnetic field generation. Lunar and Planetary Society Conference. Březen 2007, roč. 38, s. 2020. Dostupné online PDF. 
  42. BARR, A.C.; PAPPALARDO, R. T., et al. Rise of Deep Melt into Ganymede's Ocean and Implications for Astrobiology. Lunar and Planetary Science Conference. 2001, roč. 32, s. 1781. Dostupné online PDF. 
  43. HUFFMANN, H.; SOHL, F., et al. Internal Structure and Tidal Heating of Ganymede. European Geosciences Union, Geophysical Research Abstracts. 2004, roč. 6. Dostupné online PDF. 
  44. a b ZAHNLE, K.; DONES, L. Cratering Rates on the Galilean Satellites. Icarus. 1998, roč. 136, s. 202–222. Dostupné v archivu pořízeném dne 27-02-2008. DOI 10.1006/icar.1998.6015.  Archivováno 27. 2. 2008 na Wayback Machine.
  45. Ganymede online. Lunar and Planetary Institute, 1997. Dostupné online. 
  46. CASACCHIA, R.; STROM, R.G. Geologic evolution of Galileo Regio. Journal of Geophysical Research. 1984, roč. 89, s. B419–B428. Dostupné online. DOI 10.1029/JB089iS02p0B419. Bibcode 1984LPSC...14..419C. 
  47. KHURANA, Krishan K., et al. The origin of Ganymede's polar caps. Icarus. 2007, roč. 191, čís. 1, s. 193–202. Dostupné online. DOI 10.1016/j.icarus.2007.04.022. 
  48. USGS Astrogeology: Rotation and pole position for planetary satellites (IAU WGCCRE) online. Dostupné online. 
  49. a b CARLSON, R.W., et al. Atmosphere of Ganymede from its occultation of SAO 186800 on 7 June 1972. Science. 1973, roč. 53, s. 182. Dostupné online. 
  50. a b c BROADFOOT, A.L., et al. Overview of the Voyager Ultraviolet Spectrometry Results through Jupiter Encounter. Science. 1981, roč. 86, s. 8259–8284. Dostupné online PDF. 
  51. a b Hubble Finds Thin Oxygen Atmosphere on Ganymede online. Jet Propulsion Laboratory, NASA, 1996-10 cit. 2008-01-15. Dostupné v archivu pořízeném dne 2009-04-25. 
  52. FELDMAN, Paul D., et al. HST/STIS Ultraviolet Imaging of Polar Aurora on Ganymede. The Astrophysical Journal. 2000, roč. 535, s. 1085–1090. Dostupné online. DOI 10.1086/308889. 
  53. JOHNSON, R.E. Polar “Caps” on Ganymede and Io Revisited. Icarus. 1997, roč. 128, čís. 2, s. 469–471. Dostupné online. DOI 10.1006/icar.1997.5746. 
  54. a b PARANICAS, C.; PATERSON, W.R.; CHENG, A.F., et al. Energetic particles observations near Ganymede. J.of Geophys.Res.. 1999, roč. 104, čís. A8, s. 17,459–17,469. Dostupné online. DOI 10.1029/1999JA900199. 
  55. NOLL, Keith S.; JOHNSON, Robert E., et al. Detection of Ozone on Ganymede. Science. July 1996, roč. 273, čís. 5273, s. 341–343. Dostupné online. DOI 10.1126/science.273.5273.341. PMID 8662517. 
  56. CALVIN, Wendy M.; SPENCER, John R. Latitudinal Distribution of O2on Ganymede: Observations with the Hubble Space Telescope. Icarus. December 1997, roč. 130, čís. 2, s. 505–516. Dostupné online. DOI 10.1006/icar.1997.5842. 
  57. VIDAL, R. A.; BAHR, D., et al. Oxygen on Ganymede: Laboratory Studies. Science. 1997, roč. 276, čís. 5320, s. 1839–1842. Dostupné online. DOI 10.1126/science.276.5320.1839. PMID 9188525. 
  58. BROWN, Michael E. A Search for a Sodium Atmosphere around Ganymede. Icarus. 1997, roč. 126, čís. 1, s. 236–238. Dostupné online. DOI 10.1006/icar.1996.5675. 
  59. BARTH, C.A.; HORD, C.W.; STEWART, A.I., et al. Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophys. Res. Lett.. 1997, roč. 24, čís. 17, s. 2147–2150. Dostupné online. DOI 10.1029/97GL01927. 
  60. Galileo has successful flyby of Ganymede during eclipse online. Spaceflight Now cit. 2008-01-19. Dostupné online. 
  61. a b KIVELSON, M.G.; KHURANA, K.K.; CORONITI, F.V., et al. The magnetic field and magnetosphere of Ganymede. Geophys. Res. Lett.. 1997, roč. 24, čís. 17, s. 2155–2158. Dostupné online PDF. DOI 10.1029/97GL02201. 
  62. STONE, S. M. Investigation of the magnetosphere of Ganymede with Galileo's energetic particle detector. s.l.: University of Kansas, 2001. ISBN 9780599863576. (anglicky) Disertační práce. 
  63. HAUCK, Steven A. Internal structure and mechanism of core convection on Ganymede. Lunar and Planetary Science. 2002, svazek XXXIII, s. 1380. Dostupné online PDF. 
  64. a b c MUSOTTO, Susanna, et al. Numerical Simulations of the Orbits of the Galilean Satellites. Icarus. 2002, roč. 159, s. 500–504. Dostupné online. DOI 10.1006/icar.2002.6939. 
  65. a b High Tide on Europa online. SPACE.com cit. 2007-12-07. Dostupné v archivu pořízeném dne 2002-10-17. 
  66. a b c d e f g h i SHOWMAN, Adam P.; MALHOTRA, Renu. Tidal Evolution into the Laplace Resonance and the Resurfacing of Ganymede. Icarus. 1997, roč. 127, s. 93–111. Dostupné online PDF. DOI 10.1006/icar.1996.5669. 
  67. PEALE, S.J.; LEE, Man Hoi. A Primordial Origin of the Laplace Relation Among the Galilean Satellites. Science. 2002, roč. 298, s. 593–597. Dostupné online. DOI 10.1126/science.1076557. PMID 12386333. 
  68. a b The Discovery of the Galilean Satellites online. Space Research Institute, Russian Academy of Sciences cit. 2007-11-24. Dostupné online. Dostupné také na: 3. 
  69. Discovery online. Cascadia Community College cit. 2007-11-24. Dostupné v archivu pořízeném dne 2006-09-20. Dostupné také na: 4. 
  70. Exploration of Ganymede online. Terraformers Society of Canada cit. 2008-01-06. Dostupné v archivu pořízeném dne 2007-03-19. Dostupné také na: 5. 
  71. Voyager 1 and 2 online. ThinkQuest cit. 2008-01-06. Dostupné online. 
  72. The Voyager Planetary Mission online. Views of the Solar System cit. 2008-01-06. Dostupné v archivu pořízeném dne 2008-02-03. 
  73. New Discoveries From Galileo online. Jet Propulsion Laboratory, NASA cit. 2008-01-06. Dostupné v archivu pořízeném dne 2010-06-02. 
  74. Pluto-Bound New Horizons Spacecraft Gets A Boost From Jupiter online. Space Daily cit. 2008-01-06. Dostupné online. 
  75. GRUNDY, W.M.; BURATTI, B.J.; CHENG, A.F., et al. New Horizons Mapping of Europa and Ganymede. Science. 2007, roč. 318, s. 234–237. Dostupné online. DOI 10.1126/science.1147623. PMID 17932288. 
  76. RINCON, Paul. Jupiter in space agencies' sights. news.bbc.co.uk. BBC News, 2009-02-20. Dostupné online cit. 2009-02-20. 
  77. Cosmic Vision 2015–2025 Proposals online. ESA, 2007-07-21 cit. 2009-02-20. Dostupné online. 
  78. Jupiter Icy Moons Orbiter (JIMO) online. The Internet Encyclopedia of Science cit. 2008-01-06. Dostupné online. 
  79. Jupiter Icy Moons Orbiter Victim of Budget Cut online. Planet Surveyor cit. 2008-01-06. Dostupné v archivu pořízeném dne 2016-03-05. 
  80. PAPPALARDO, R.T.; KHURANA, K.K.; MOORE, W.B. The Grandeur of Ganymede: Suggested Goals for an Orbiter Mission. Lunar and Planetary Science. 2001, roč. XXXII, s. 4062. Dostupné online PDF. 

Literaturaeditovat | editovat zdroj

  • ČEMAN, Róbert. Vesmír 1 Sluneční soustava. 1. vyd. Bratislava : Mapa Slovakia Bratislava, 2002. ISBN 80-8067-072-2.
  • GREGERSEN, Erik. The Outer Solar System: Jupiter, Saturn, Uranus, Neptune, and the Dwarf Planets. Britannica Educational Pub. ISBN 978-1-61530-014-3. Str. 109. Anglicky.

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Ganymedes_(měsíc)
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Úmrtí v roce 2023
Ústřední seznam kulturních památek České republiky
Čáslavský sněm
Čína
Čínsko-vietnamská válka (1406–1428)
Časová osa ruské invaze na Ukrajinu
Čeleď
Černá Hora
Černé moře
Černé uhlí
Česká Wikipedie
Česká zbrojovka Strakonice
České Budějovice
České knížectví
České království
Český král
Česko
Československá kosmonautika
Československo
Československo-polský spor o Těšínsko
ČKD#Objekty ČKD
ČKD Dopravní systémy
Členské státy NATO
Š’ Ťin-čching
Šiveluč
Štěpán z Dolan
Židé
Židovská legie
Židovská národní rada
Židovský kalendář
Život
1072
11. duben
1112
12. červen
12. prosinec
1281
1290
13. století
1303
1353
1360
1375
1380
1398
14. duben
14. srpen
14. století
1401
1408
1411
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1428
1431
1438
1441
1450
1461
1463
1471
1498
15. leden
15. století
1505
16. srpen
16. století
17. duben
17. století
18. prosinec
18. století
1884
19. květen
19. století
1913
1923
1948
1961
1963
1978
1995
2. červen
2. březen
2. duben
2. tisíciletí
20. říjen
20. duben
2004
2008
2013
2021
2023
21. květen
21. srpen
22. duben
22. září
23. duben
23. září
238
24. listopad
25. červenec
26. květen
26. září
27. červenec
28. březen
29. květen
3. červenec
3. březen
4. duben
5. prosinec
6. únor
6. prosinec
875
9. únor
905
915
Aaron Spelling
Abel Posse
Achdut ha-avoda
Adaptace
Agnès Sorel
Agostino di Duccio
Ahmad Jamal
Albrecht VI. Habsburský
Alela
Alexej Alexandrovič Gubarev
Alexios I. Komnenos
Alfred Russel Wallace
Alija
Alpinské vrásnění
Andrea Palladio
Angélique du Coudray
Angličané
Anglie
Apomixie
Architektonický styl
Architektura starověkého Říma
Architektura starověkého Řecka
Ariane 5
Asie
Aun Schan Su Ťij
Balbinus
Balduin I. Jeruzalémský
Bali
Barokní architektura
Bar Giora
Bavorské vévodství
Bavorsko
Bayezid Paša
Ben Ferencz
Bernard VII. z Armagnacu
Bettie Page
Biologická zdatnost
Biom
Bitva u Žlutic
Bitva u Kutné Hory
Bitva u Mostu
Boční kavkazský hřbet
Bořivoj I.
Boca Chica (Texas)
Bohemund II. z Antiochie
Bohemund z Tarentu
Bohuslav Korejs
Bolševici
Bor (les)
Brno
Bylina
Byzantská říše
Cévnaté rostliny
Callisto
Charles Darwin
Chomutov
Chrysococcyx
Commons:Featured pictures/cs
Craig Breen
Crescente fide
Dědičnost
Dějiny architektury
Daman a Díu
Dana Němcová
Darwinismus
David Ben Gurion
Deklarace nezávislosti Státu Izrael
Devon (geologie)
Diverzifikace
Diverzita
Donald Trump
Drážní úřad
Druhá křížová výprava proti husitům
Edesské hrabství
Ekologie
Elbrus
Elena Pampulovová
Emilia Galotti
Empír
Encyklopedie
Endemit
Epifyt
Epigenetika
Etnologie
Eufrat
Eurasie
Europa (měsíc)
Evoluční biologie
Evoluční teorie her
Evolučně vývojová biologie
Evoluce
Evropa
Evropská kosmická agentura
Evropská unie
Evropský parlament
Finsko
Francie
Fylogenetika
Galilejské knížectví
Galileovy měsíce
Ganymedes (měsíc)
Genetický drift
Genomika
Geometrie
Global 200
Goa (stát)
Gotika
Gotthold Ephraim Lessing
Gregoriánský kalendář
Héraklés
Ha-Šomer
Habsburkové
Hagana
Helvisa Brunšvicko-Grubenhagenská
Himálaj
Histadrut
Hlavní kavkazský hřeben
Hlavní strana
Hlavohruď
Hnací náprava
Horní Falc
Hradiště
Husitské války
Husitství
Hynek z Ronova
Indický oceán
Indický subkontinent
Interkosmos
Istanbulská univerzita
Itálie
Izrael
Jáva
Jacques Gaillot
Jakov Milatović
Jana Lorencová
Jan I. Burgundský
Jan Kropidlo
Jan Medicejský (1421-1463)
Jan Sádlo ze Smilkova
Jeruzalém
Jicchak Ben Cvi
Jindřich III. Kastilský
Jindřich Percy (3. hrabě z Northumberlandu)
Jindřich V. Plantagenet
Jindřich VI. Anglický
Josep Fusté
Jupiter (planeta)
Jupiter Icy Moons Explorer
Křižákovití
Křižák podkorní
Křovinná vegetace
Kamčatka
Kapraďorosty
Karbon
Karel VI. Šílený
Karel VI. Francouzský
Karel VII. Francouzský
Karel z Viany
Kaspické moře
Kateřina z Lancasteru
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kavkaz
Kavkazské jazyky
Keř
Keřové patro
Kidd Jordan
Kilíkie
Klášterní Skalice
Klášter Sezemice
Klasicismus
Klasicistní architektura
Kočkovití
Kolonialismus
Komplexita
Komunistická strana Čech a Moravy
Kosmonaut
Kosmopolitní kultura
Kostel Panny Marie (Pražský hrad)
Kostnický koncil
Kristiánova legenda
Kukačka nádherná
Kukačky
Kumomanyčská propadlina
Kutná Hora
Latinská Amerika
Ledovec
Lesní plášť
Lesostep
Letecké muzeum Kbely
Lockheed F-117 Nighthawk
Louka
Lucemburkové
Múte Bourup Egede
Měšek I. Těšínský
Město
Městská památková zóna
Městské opevnění (Tachov)
Maďarsko
Macao
Madeira (ostrov)
Mahulena Čejková
Makroevoluce
Malý Kavkaz
Malacký průliv
Malvice
Mamlúci
Manuel II. Palaiologos
Mapaj
Martin Húska
Martin V.
Marxismus
Mary Quantová
Medonosná rostlina
Medvěd hnědý
Medvěd lední
Mehmed I.
Mendelovy zákony dědičnosti
Mezinárodní svaz ochrany přírody
Mezozoikum
Mikroevoluce
Milo Đukanović
Mircea I.
Moderní evoluční syntéza
Mokřad
Moluky
Mongolové
Montes Caucasus
Mor
Myanmar
Mys Dobré naděje
Náhorní Karabach
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Historie stránky
Nápověda:Obsah
Národní liga pro demokracii
Německo
Nadace Wikimedia
Nagasaki
Nanni di Banco
Neoklasicismus
Nigel Lawson
Nizozemci
Normané
Nukleárie
Obléhání husitů v Chotěboři
Obléhání Jeruzaléma (1099)
Obléhání Kadaně 1421
Odúmrť
Oldřich IV. Vavák z Hradce
Opolské knížectví
Osmanská říše
Osvětimské knížectví
Přemek Ratibořský
Přemyslovci
Přemysl Otakar II.
Přirozený výběr
Přivrácená strana Měsíce
Paříž
Padělek
Palearktická oblast
Paleozoikum
Palestina v osmanském období
Palladiánská architektura
Papež
Paradigma
Parafyletismus
Patrik Kotas
Pavouci
Perm
Petrohrad
Petr Hromádka
Petr Kániš
Petr Zmrzlík ze Svojšína (mladší)
Petr Zmrzlík ze Svojšína (starší)
Pevnost (stavba)
Piastovci
Pilot
Plavby Čeng Chea
Plavuň vidlačka
Plavuně
Plzeňský kraj
Po'alej Cijon
Podlažický klášter
Polární kruh
Polsko
Poltava
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Portugalština
Portugalci
Portugalská Indie
Poznaň
Průmyslová revoluce
Pražský hrad
Praha
Pravda (noviny)
Prezident Černé Hory
Prezident Izraele
Prométheus
První křížová výprava
Pupienus
Růžovité
Rakousko-Uhersko
Ratibořské knížectví
Renesanční architektura
Rodné jméno
Rodozměna
Rod (biologie)
Rokoko
Rouen
Rozmnožování
Rudé moře
Ruská invaze na Ukrajinu
Ruské impérium
Ruský Dálný východ
Rusko
Saljut 6
Semiaridní podnebí
Sergio Gori
Sesterská skupina
Severní Afrika
Severoatlantická aliance
Seznam burgundských vévodů
Seznam opolských knížat
Seznam prezidentů Spojených států amerických
Seznam těšínských knížat
Seznam velvyslanců České republiky v Rusku
Sibiř
Silur
Sionismus
Skalník černoplodý
Skalník (Cotoneaster)
Skalník celokrajný
Skalník rozkladitý
Slezská knížectví
Smíšený les
Sobecký gen
Sojuz 28
Sopečná erupce
Soubor:2016 Malakka, A Famosa (03).jpg
Soubor:Arc Triomphe.jpg
Soubor:Bettie Page-2.jpg
Soubor:Cieszyn Piast dynasty COA.png
Soubor:Darwin Tree 1837.png
Soubor:Flag of Koryakia.svg
Soubor:Henry VI of England, Shrewsbury book.jpg
Soubor:Karukold 2010.jpg
Soubor:Kavkasioni.JPG
Soubor:Mehmed I miniature.jpg
Soubor:Narodni Divadlo, Estates Theater, Prague - 8638.jpg
Soubor:Nuctenea umbratica (Araneidae) - (female imago), Arnhem, the Netherlands.jpg
Soubor:Panthera tigris altaica 09 - Buffalo Zoo.jpg
Soubor:RT6N1.JPG
Soubor:Shining Bronze-Cuckoo Dayboro.JPG
Soubor:Spitygniew I.jpg
Soubor:Starr 020221-9400 Cotoneaster pannosus.jpg
Soubor:Tachov - městské hradby ze Zámecké ulice.JPG
Soubor:Tancrède de Hauteville.jpg
Soubor:Vladimír Remek (2018).jpg
Soubor:Yitzhak Ben-Zvi.jpg
Sovětský svaz
Spa
SpaceX
SpaceX South Texas launch site
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciace
Spojené státy americké
Spora
Spytihněv I.
Střední Evropa
Stará Boleslav
Starship (SpaceX)
Starship Test Flight
Stavovské divadlo
Step
Stoletá válka
Strom
Sudokopytníci
Sumatra
Svatá říše římská
Svatá Ludmila
Svatá země
Svatopluk I.
Symetrie
Těšínské knížectví
Těšínsko
Tachov
Tankred Galilejský
Tarsus
Tatra RT6N1
Technické muzeum v Brně
Teorie přerušovaných rovnováh
Teplomilná doubrava
Tetín (hrad)
Texas
Tramvaj
Trias
Trojúhelník
Tropický deštný les
Tropický pás
Tundra
Turci
Turecko
Tygr
Uhersko
Václav IV.
Války růží
Výchoz
Velké kočky
Velký Kavkaz
Velkomoravská říše
Vesmírná stanice
Vitislav (895)
Vladimír Remek
Vladimir Kara-Murza
Vladislav I. Opolský
Vladislav II. Jagello
Vladlen Tatarskij
Vlajka Korjackého autonomního okruhu
Vojenská junta
Vojenský převrat v Myanmaru 2021
Volby do Knesetu 1949
Vraneček
Vratislav Effenberger
Vratislav I.
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2023
Wikipedie:Článek týdne/Archiv
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2023
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/duben
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2023
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Západní svět
Zadeček
Zadní Indie
Zatčení
Zdeněk Ziegler
Zeus
Zikmund Lucemburský




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk