A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Mocninová funkcia je typ elementárnej matematickej funkcie jednej premennej, v ktorej vystupuje len jeden člen s mocninou. Mocninová funkcia je špeciálnym prípadom polynomickej funkcie. Najznámejším príkladom mocninovej funkcie je špeciálny prípad kvadratickej funkcie. Podľa stupňa mocniny premennej sa rozlišujú mocninové funkcie rôznych druhov. V začiatkoch budovania matematickej teórie o funkciách boli predmetom skúmania práve mocninové funkcie, z ktorých bolo odvodené množstvo vlastností a vzťahov. K mocninovým funkciám sa neskôr pridružili aj ďalšie funkcie a spolu vytvorili skupinu pod názvom elementárne funkcie. Pomocou základných mocninových funkcií je možné modelovať veľmi veľa jednoduchých situácii a javov. Svoje opodstatnenie našli v samotnej matematike, vo fyzike, ekonómii a v mnohých ďalších oblastiach.
Krajne asymetrickým rozdelením/rozložením sa zaoberal napr. český geograf, demograf a štatistik Jaromír Korčák v dielach Deux types fondamentaux de distribution statistique (1938) alebo Přírodní dualita statistického rozložení (1941).

Definícia
Nech . Potom predpis
nazývame mocninová funkcia s reálnym mocniteľom. Ak potom ide o mocninovú funkciu so záporným celočíselným mocniteľom. Ak ide o mocninovú funkciu s kladným celočíselným mocniteľom alebo s prirodzeným mocniteľom.
Druhy mocninových funkcií
Mocninové funkcie sa rozlišujú podľa stupňa mocniny premennej, ktorú obsahujú. Lineárna a konštantná funkcia sú špeciálnym prípadom mocninovej funkcie. Obvykle sa ale v definícii týchto funkcii nepíšu mocniny. V nasledovnej tabuľke sú mocninové funkcie s ich názvami nanajvýš tretieho stupňa:
Stupeň | Predpis funkcie | Názov |
---|---|---|
nepriama úmernosť | ||
konštantná funkcia | ||
lineárna funkcia | ||
kvadratická funkcia | ||
kubická funkcia |
Vlastnosti mocninových funkcií
Vlastnosti mocninových funkcií sú závislé od stupňa mocniny. Grafy tohto typu funkcií sú rôzne, čo závisí opäť od veľkosti a druhu mocniteľa. Napríklad parabola alebo hyperbola.[1] Mocninové funkcie s kladným mocniteľom majú tú spoločnú vlastnosť, že všetky prechádzajú začiatkom sústavy súradníc. Ostatné vlastnosti sa navzájom líšia. Keďže vlastnosti závisia od mocniteľa, je lepšie obmedziť sa na funkcie s celočíselným párnym resp. nepárnym mocniteľom.
Funkcia s kladným párnym mocniteľom
Vlastnosť | Rozbor | Graf |
---|---|---|
definičný obor a obor hodnôt | ![]() | |
prostá funkcia | Funkcia nie je prostá, pretože neplatí nasledovná implikácia pre ľubovoľnú dvojicu čísel :
| |
monotónnosť | Ak je kladné, potom funkcia je klesajúca na intervale a rastúca na intervale , v opačnom prípade je funkcia rastúca na intervale a klesajúca na intervale |