Tuned circuit - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Tuned circuit
 ...

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

LC circuits are used either for generating signals at a particular frequency, or picking out a signal at a particular frequency from a more complex signal; this function is called a bandpass filter. They are key components in many electronic devices, particularly radio equipment, used in circuits such as oscillators, filters, tuners and frequency mixers.

An LC circuit is an idealized model since it assumes there is no dissipation of energy due to resistance. Any practical implementation of an LC circuit will always include loss resulting from small but non-zero resistance within the components and connecting wires. The purpose of an LC circuit is usually to oscillate with minimal damping, so the resistance is made as low as possible. While no practical circuit is without losses, it is nonetheless instructive to study this ideal form of the circuit to gain understanding and physical intuition. For a circuit model incorporating resistance, see RLC circuit.

Terminology

The two-element LC circuit described above is the simplest type of inductor-capacitor network (or LC network). It is also referred to as a second order LC circuit[1][2] to distinguish it from more complicated (higher order) LC networks with more inductors and capacitors. Such LC networks with more than two reactances may have more than one resonant frequency.

The order of the network is the order of the rational function describing the network in the complex frequency variable s. Generally, the order is equal to the number of L and C elements in the circuit and in any event cannot exceed this number.

Operation

Animated diagram showing the operation of a tuned circuit (LC circuit). The capacitor C stores energy in its electric field E and the inductor L stores energy in its magnetic field B (green). The animation shows the circuit at progressive points in the oscillation. The oscillations are slowed down; in an actual tuned circuit the charge may oscillate back and forth thousands to billions of times per second.

An LC circuit, oscillating at its natural resonant frequency, can store electrical energy. See the animation. A capacitor stores energy in the electric field (E) between its plates, depending on the voltage across it, and an inductor stores energy in its magnetic field (B), depending on the current through it.

If an inductor is connected across a charged capacitor, the voltage across the capacitor will drive a current through the inductor, building up a magnetic field around it. The voltage across the capacitor falls to zero as the charge is used up by the current flow. At this point, the energy stored in the coil's magnetic field induces a voltage across the coil, because inductors oppose changes in current. This induced voltage causes a current to begin to recharge the capacitor with a voltage of opposite polarity to its original charge. Due to Faraday's law, the EMF which drives the current is caused by a decrease in the magnetic field, thus the energy required to charge the capacitor is extracted from the magnetic field. When the magnetic field is completely dissipated the current will stop and the charge will again be stored in the capacitor, with the opposite polarity as before. Then the cycle will begin again, with the current flowing in the opposite direction through the inductor.

The charge flows back and forth between the plates of the capacitor, through the inductor. The energy oscillates back and forth between the capacitor and the inductor until (if not replenished from an external circuit) internal resistance makes the oscillations die out. The tuned circuit's action, known mathematically as a harmonic oscillator, is similar to a pendulum swinging back and forth, or water sloshing back and forth in a tank; for this reason the circuit is also called a tank circuit.[3] The natural frequency (that is, the frequency at which it will oscillate when isolated from any other system, as described above) is determined by the capacitance and inductance values. In most applications the tuned circuit is part of a larger circuit which applies alternating current to it, driving continuous oscillations. If the frequency of the applied current is the circuit's natural resonant frequency (natural frequency below), resonance will occur, and a small driving current can excite large amplitude oscillating voltages and currents. In typical tuned circuits in electronic equipment the oscillations are very fast, from thousands to billions of times per second.[citation needed]

Resonance effect

Resonance occurs when an LC circuit is driven from an external source at an angular frequency ω0 at which the inductive and capacitive reactances are equal in magnitude. The frequency at which this equality holds for the particular circuit is called the resonant frequency. The resonant frequency of the LC circuit is

where L is the inductance in henries, and C is the capacitance in farads. The angular frequency ω0 has units of radians per second.

The equivalent frequency in units of hertz is

Applications

The resonance effect of the LC circuit has many important applications in signal processing and communications systems.

  • The most common application of tank circuits is tuning radio transmitters and receivers. For example, when tuning a radio to a particular station, the LC circuits are set at resonance for that particular carrier frequency.
  • A series resonant circuit provides voltage magnification.
  • A parallel resonant circuit provides current magnification.
  • A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers. Due to high impedance, the gain of amplifier is maximum at resonant frequency.
  • Both parallel and series resonant circuits are used in induction heating.

LC circuits behave as electronic resonators, which are a key component in many applications:

Time domain solution

Kirchhoff's laws

By Kirchhoff's voltage law, the voltage VC across the capacitor plus the voltage VL across the inductor must equal zero:

Likewise, by Kirchhoff's current law, the current through the capacitor equals the current through the inductor:

From the constitutive relations for the circuit elements, we also know that

Differential equation

Rearranging and substituting gives the second order differential equation

The parameter ω0, the resonant angular frequency, is defined as

Using this can simplify the differential equation:

The associated Laplace transform is

thus

where j is the imaginary unit.

Solution

Thus, the complete solution to the differential equation is

and can be solved for A and B by considering the initial conditions. Since the exponential is complex, the solution represents a sinusoidal alternating current. Since the electric current I is a physical quantity, it must be real-valued. As a result, it can be shown that the constants A and B must be complex conjugates:

Now let

Therefore,

Next, we can use Euler's formula to obtain a real sinusoid with amplitude I0, angular frequency ω0 = 1/LC, and phase angle .

Thus, the resulting solution becomes







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk